稿件来源:高途
| 8.6.3 平面与平面垂直题目答案及解析如下,仅供参考!
必修二
第八章 立体几何初步
8.6 空间直线、平面的垂直
8.6.3 平面与平面垂直
如图,在多面体$ABCDEFGH$中,平面$ABCD$与平面$EFGH$均为矩形且相互平行,$AB=1$,$BC=3$,$EF=2$,$FG=4$,$AE=DH$,$BF=CG$,$AH\bot EF$.设$\angle DHE=\theta $.
$(1)$求证:平面$AEHD\bot $平面$EFGH$;
$(2)$若多面体$ABCDEFGH$的体积为$\dfrac{8}{3}$:
$($ⅰ)求$\theta $;
$($ⅱ)求平面$AEF$与平面$AEG$夹角的余弦值.
$(1)$ 证明见解析
$(2)$ $(ⅰ)$ $\\dfrac{\\pi }{4}$
$(ⅱ)$ $\\dfrac{\\sqrt{3}}{3}$
$(1)$证明:因为四边形$EFGH$是矩形,所以$EF\bot EH$,
又因为$EF\bot AH$,$EH\cap AH=H$,$EH$,$AH\subset $平面$AEHD$,
所以$EF\bot $平面$AEHD$,又$EF\subset $平面$EFGH$,
所以平面$AEHD\bot $平面$EFGH$;
$(2)\left(i\right) $因为$AE=DH$,所以四边形$ADHE$是等腰梯形,如图,
,
过点$D$作$DM\bot EH$,垂足为$M$,过点$A$作$AN\bot EH$,垂足为$N$,
则$HM=EN=\dfrac{1}{2}\left(EH-AD\right)=\dfrac{1}{2}$,同理,作$CJ\bot FG$,$BK\bot FG$,则$FK=JG=\dfrac{1}{2}$,
因为平面$AEHD\bot $平面$EFGH$,平面$AEHD\cap $平面$EFGH=EH$,
所以$DM\bot $平面$EFGH$,$AN\bot $平面$EFGH$,记$DM=AN=h$,
连接$MJ$,$NK$,作$CP\bot MJ$,则$CP=DM=h$,
由对称性可知$V_{BFK-AEN}=V_{CJG-DMH}$,所以$V_{ABCDEFGH}=V_{BCJK-ADMN}+2V_{CJG-DMH}$,
$V_{BCJK-ADMN}=S_{四边形CDMJ}×MN=\dfrac{1}{2}\left(1+2\right)h×3=\dfrac{9}{2}h$,
$V_{CJG-DMH}=V_{CPQ-DMH}+V_{CCPQJG}=\left(\dfrac{1}{2}×\dfrac{1}{2}×h\right)×1+\dfrac{1}{3}\left(\dfrac{1}{2}×1\right)×h=\dfrac{5}{12}h$,
所以$V_{ABCDEFGH}=\dfrac{9}{2}h+2×\dfrac{5}{12}h=\dfrac{16}{3}h=\dfrac{8}{3}$,所以$h=\dfrac{1}{2}$,
在$Rt\triangle DHM$中,$DM=h=\dfrac{1}{2},HM=\dfrac{1}{2}$,
所以$\theta =∠DHE=\dfrac{\pi }{4}$;
$\left(ii\right)$由(ⅰ)以$N$为原点,以$NK$,$NH$,$NA$所在直线分别为$x$,$y$,$z$轴建立如图所示的空间直角坐标系,
,
则$A\left(0,0,\dfrac{1}{2}\right),E\left(0,-\dfrac{1}{2},0\right),F\left(2,-2,0\right)$,$G\left(2,\dfrac{7}{2},0\right)$,
则$\overrightarrow{AE}=\left(0,-\dfrac{1}{2},-\dfrac{1}{2}\right),\overrightarrow{EF}=\left(2,0,0\right),\overrightarrow{EG}=\left(2,4,0\right)$,
设平面$AEF$的法向量$\overrightarrow{n_1}=\left(x_1,y_1,z_1\right)$,
则$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}\cdot \overrightarrow{AE}=0}\\{\overrightarrow{EF}\cdot \overrightarrow{{n}_{1}}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{-\dfrac{1}{2}{y}_{1}-\dfrac{1}{2}{z}_{1}=0}\\{2{x}_{1}=0}\end{array}\right.$,令$y_{1}=1$,则$z_{1}=-1,x_{1}=0$,所以$\overrightarrow{{n}_{1}}=\left(0,1,-1\right)$,
设平面$AEG$的法向量$\overrightarrow{n_2}=\left(a,b,c\right)$,
则$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}\cdot \overrightarrow{AE}=0}\\{\overrightarrow{EG}\cdot \overrightarrow{{n}_{2}}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{-\dfrac{1}{2}b-\dfrac{1}{2}c=0}\\{2a+4b=0}\end{array}\right.$,令$a=2$,则$b=-1$,$c=1$,所以$\boldsymbol{n_2}=\left(2,-1,1\right)$,
所以$\cos⟨\overrightarrow{n_{1}},\overrightarrow{n_{2}}⟩=\dfrac{\overrightarrow{n_{1}}\cdot\overrightarrow{n_{2}}}{|\overrightarrow{n_{1}}||\overrightarrow{n_{2}}|}=\dfrac{-2}{\sqrt{2}\times\sqrt{6}}=-\dfrac{\sqrt{3}}{3}$,
设平面$AEF$与平面$AEG$夹角为$\alpha $,则$\cos\alpha=|\cos⟨\overrightarrow{n_{1}},\overrightarrow{n_{2}}⟩|=\dfrac{\sqrt{3}}{3}$,
所以平面$AEF$与平面$AEG$夹角的余弦值为$\dfrac{\sqrt{3}}{3}$.
| 8.6.3 平面与平面垂直题目答案及解析(完整版)