高中 | 带电粒子在交变电场中的运动 题目答案及解析

稿件来源:高途

高中 | 带电粒子在交变电场中的运动题目答案及解析如下,仅供参考!

选修3-1

第一章 静电场

1.9 带电粒子在电场中的运动

带电粒子在交变电场中的运动

如图甲所示,在空间坐标系$xOy$中,$\alpha$射线管放置在第Ⅱ象限,由平行金属板$A$$B$和平行于金属板的细管$C$组成,细管$C$到两金属板距离相等,右侧的开口在$y$轴上,金属板和细管$C$均平行于$x$轴。放射源$P$$A$板左端,可以沿特定方向发射某一初速度的$\alpha$粒子。若金属板长为$L$、间距为$d$,当$A$$B$板间加上某一电压时,$\alpha$粒子刚好能以速度$v_{0}$从细管$C$水平射出,进入位于第$I$象限的静电分析器中。静电分析器中存在着辐向电场,分布在整个第$I$象限的区域内,电场线沿半径方向,指向与坐标系原点重合的圆心$O$。粒子在该电场中恰好做匀速圆周运动,$\alpha$粒子运动轨迹处的场强大小为$E_{0}$$t=0$时刻$\alpha$粒子垂直$x$轴进入第$IV$象限的交变电场中,交变电场的场强大小为$E_{0}$,方向随时间的变化关系如图乙所示,规定沿$x$轴正方向为电场的正方向。已知$\alpha$粒子的电荷量为$2e$$e$为元电荷)、质量为$m$,重力不计。以下说法中正确的是$(\qquad)$

["

$\\alpha$粒子从放射源$P$运动到$C$的过程中动能减少了$\\dfrac{md^{2}v_{0}^{2}}{L^{2}}$

","

$\\alpha$粒子从放射源$P$发射时的速度大小为$v_{0}\\sqrt{1 + \\dfrac{d^{2}}{L^{2}}}$

","

$\\alpha$粒子在静电分析器中运动的轨迹半径为$\\dfrac{mv_{0}^{2}}{eE_{0}}$

","

$t=2T$时刻,$\\alpha$粒子的坐标为$(\\dfrac{mv_{0}^{2}}{2eE_{0}} + \\dfrac{eE_{0}T^{2}}{m}, - 2\\nu_{0}T)$

"]
[["BD"]]

$\rm AB$、设$\alpha$粒子运动到$C$处时速度为$v_{0}$$\alpha$粒子从放射源$P$运动到$C$的逆运动为类平抛运动,水平方向有:$L=v_{0}t$

竖直方向有:$\dfrac{d}{2} = \dfrac{1}{2}at^{2}$

由牛顿第二定律有:$2e\dfrac{U}{d} = ma$

联立解得:$U = \dfrac{md^{2}v_{0}^{2}}{2eL^{2}}$

$\alpha$粒子从放射源发射出到$C$的过程,由动能定理有

$﹣2e\cdot $$\dfrac{1}{2}$$U=\Delta E_{k}$

解得:$\Delta E_{k} = - eU = - \dfrac{md^{2}v_{0}^{2}}{2L^{2}}$,即$\alpha$粒子从放射源$P$运动到$C$的过程中动能减少了$\dfrac{md^{2}v_{0}^{2}}{2L^{2}}$

$\alpha$粒子发射时速度的大小为$v$$\alpha$粒子从放射源发射至运动到$C$的过程,由动能定理有

$- \dfrac{1}{2} \times 2$$eU$$= \dfrac{1}{2}mv_{0}^{2} - \dfrac{1}{2}mv^{2}$

解得:$v = v_{0}\sqrt{1 + \dfrac{d^{2}}{L^{2}}}$,故$\rm A$错误,$\rm B$正确;

$\rm C$$\alpha$粒子进入静电分析器中,由静电力提供向心力,由牛顿第二定律有$2eE_{0} = m\dfrac{v_{0}^{2}}{r}$

解得$\alpha$粒子在静电分析器中运动的轨迹半径为:$r = \dfrac{mv_{0}^{2}}{2eE_{0}}$,故$\rm C$错误;

$\rm D$$\alpha$粒子垂直$x$轴进入第$IV$象限的交变电场中,$t$$= \dfrac{T}{2}$时,$\alpha$粒子沿$x$方向的速度为

$v_{x}$$= \dfrac{2eE_{0}}{m}$$\cdot $$\dfrac{T}{2}$

所以一个周期内,$\alpha$粒子在$x$方向的平均速度为$\overline{v_{x}} = \dfrac{v_{x}}{2} = \dfrac{eE_{0}T}{2m}$

每个周期$\alpha$粒子在$x$正方向前进距离为$x_{0} = \overline{v_{x}}T = \dfrac{eE_{0}T^{2}}{2m}$

因为开始计时时$\alpha$粒子横坐标为$r = \dfrac{mv_{0}^{2}}{2eE_{0}}$

所以$t=2T$时,$\alpha$粒子的横坐标为$x = r + 2x_{0} = \dfrac{mv_{0}^{2}}{2eE_{0}} + 2 \times \dfrac{eE_{0}T^{2}}{2m}$

$\alpha$粒子的纵坐标为

$y=﹣v_{0}\cdot 2T$

$nT$$\alpha$粒子的坐标为:$(\dfrac{mv_{0}^{2}}{2eE_{0}} + \dfrac{eE_{0}T^{2}}{m}, - 2v_{0}T)$,故$\rm D$正确。

故选:$\rm BD$

高中 | 带电粒子在交变电场中的运动题目答案及解析(完整版)

去刷题
相关题库:
如图所示,在平面直角坐标系第三象限存在竖直向上的匀强电场,场强大小为;第二象限存在水平向右的匀强电场,场强大小也为;第一象限存在水平向左的匀强电场,场强大小为。一质量为、电荷量为的正离子从 点由静止释放,点位置坐标为(,),不计该离子的重力。 如图甲所示,粒子射线管由平行于轴的平行金属板、组成,、板长度和板间距均为,、板中间有平行于轴的绝缘细管,开口在轴上。粒子源放置在极板左下端,可以沿特定方向发射粒子。当、板加上某一电压时,粒子刚好能以速度水平进入细管,保持速度不变,再进入静电分析器中做匀速圆周运动,已知静电分析器中电场线的方向均沿半径方向指向圆心,粒子在静电分析器中运动的轨迹半径为。之后粒子垂直轴进入第四象限(此时对应图乙时刻),施加如图乙所示沿轴方向的交变电场。规定沿轴正方向为电场正方向。已知粒子电荷量大小为,质量为,重力不计。求: 平行板间加如图乙所示的周期性变化的电压,时板带正电,如图甲所示,一带正电的粒子紧靠板,从时刻开始将其释放,运动过程无碰板情况。粒子运动的速度时间图像正确的是 在如图甲所示的平行板电容器、两板上加上如图乙所示的交流电压,开始时板的电势比板的高。这时在两板中间的电子由静止在静电力作用下开始运动,设电子在运动中不与极板发生碰撞,则下列说法正确的是(不计电子重力) 如图为范围足够大的匀强电场的电场强度随时间变化的关系图像。当时,在此匀强电场中由静止释放一个带电粒子,设带电粒子只受电场力的作用,则下列说法中正确的是 如图甲所示,真空中相距的两块平行金属板、与电源连接,板接地,板电势变化的规律如图乙所示。将一个质量为电荷量为的粒子在时刻从紧临板小孔处无初速度释放,粒子恰好不能到达板,粒子重力不计。求:
今日推荐