稿件来源:高途
| 4.2.3 二项分布与超几何分布题目答案及解析如下,仅供参考!
选择性必修二
第四章 概率与统计
4.2 随机变量
4.2.3 二项分布与超几何分布
$2024$年$3$月$28$日,小米$SU7$汽车上市,对电动汽车市场产生了重大影响,某品牌电动汽车采取抽奖促销活动,每位顾客只能参加一次.抽奖活动规则如下:在一个不透明的口袋中装有$n$个球$\left( n\ge 5,n\in {{\mathbf{N}}^{\text{*}}} \right)$,其中有$4$个黑球,其余都是白球,这些球除颜色外全部相同,顾客将口袋中的球随机地逐个取出,并放入编号为$1$,$2$,$3$,$\cdot \cdot \cdot $,$n$的纸盒内,其中第$k$次取出的球放入编号为$k$的纸盒$\left( k=1,2,3,\cdot \cdot \cdot ,n \right)$.若编号为$1$,$2$,$3$,$4$的纸盒中有$4$个黑球,则获得优惠券$10000$元;若编号为$1$,$2$,$3$,$4$的纸盒中有$3$个黑球,则获得优惠券$5000$元;若编号为$1$,$2$,$3$,$4$的纸盒中有$2$个黑球,则获得优惠券$1000$元;其他情况不获得优惠券.
$(1)$已知$n=10$,顾客甲参加了此品牌电动汽车的促销活动,求顾客甲获得优惠券的概率;
$(2)$设随机变量${X}$表示最后一个取出的黑球所在纸盒编号的倒数,证明:${X}$的期望小于$\dfrac{4}{3 n}$.
$(1)$$\\dfrac{23}{42}$
$(2)$证明过程见解析
"]]$(1)$设顾客甲获得的优惠券金额为$Y$元,“顾客甲获得优惠券”为事件$A$,
则$P\left( Y=1000 \right)=\dfrac{\text{\rm {C}}_{4}^{2}\text{\rm {C}}_{6}^{2}}{\text{\rm {C}}_{10}^{4}}=\dfrac{3}{7},P\left( Y=5000 \right)=\dfrac{\text{\rm {C}}_{4}^{3}\text{\rm {C}}_{6}^{1}}{\text{\rm {C}}_{10}^{4}}=\dfrac{4}{35},P\left( Y=10000 \right)=\dfrac{\text{\rm {C}}_{4}^{4}\text{\rm {C}}_{6}^{0}}{\text{\rm {C}}_{10}^{4}}=\dfrac{1}{210}$,
$\therefore P\left( A \right)=P\left( Y=1000 \right)+P\left( Y=5000 \right)+P\left( Y=10000 \right)=\dfrac{3}{7}+\dfrac{4}{35}+\dfrac{1}{210}=\dfrac{23}{42}$,
即顾客甲获得的优惠券的概率为$\dfrac{23}{42}$;
$(2)$随机变量${X}$的分布列为:
${X}$ | $\dfrac{1}{4}$ | $\dfrac{1}{5}$ | $\dfrac{1}{6}$ | $\cdots $ | $\dfrac{1}{k}$ | $\cdots $ | $\dfrac{1}{n}$ |
$P$ | $\dfrac{\text{C}_{\text{3}}^{\text{3}}}{\text{C}_{n}^{\text{4}}}$ | $\dfrac{\text{C}_{4}^{\text{3}}}{\text{C}_{n}^{\text{4}}}$ | $\dfrac{\text{C}_{5}^{\text{3}}}{\text{C}_{n}^{\text{4}}}$ | $\cdots $ | $\dfrac{\text{C}_{k-1}^{\text{3}}}{\text{C}_{n}^{\text{4}}}$ | $\cdots $ | $\dfrac{\text{C}_{n-1}^{\text{3}}}{\text{C}_{n}^{\text{4}}}a$ |
随机变量${X}$的期望为$E\left( X \right)=\sum\limits_{k=4}^{n}{\dfrac{1}{k}}\cdot \dfrac{\text{\rm {C}}_{k-1}^{3}}{\text{\rm {C}}_{n}^{4}}=\dfrac{1}{\text{\rm {C}}_{n}^{4}}\sum\limits_{k=4}^{n}{\dfrac{1}{k}}\cdot \dfrac{\left( k-1 \right)!}{3!\left( k-4 \right)!}$,
$\because \dfrac{1}{k}\cdot \dfrac{\left( k-1 \right)!}{3!\left( k-4 \right)!}=\dfrac{k-1}{k}\cdot \dfrac{\left( k-2 \right)!}{3!\left( k-4 \right)!}\lt \dfrac{\left( k-2 \right)!}{3!\left( k-4 \right)!}$,
$\therefore E\left( X \right)=\dfrac{1}{\text{\rm {C}}_{n}^{4}}\sum\limits_{k=4}^{n}{\dfrac{1}{k}}\cdot \dfrac{\left( k-1 \right)!}{3!\left( k-4 \right)!}\lt \dfrac{1}{\text{\rm {C}}_{n}^{4}}\sum\limits_{k=4}^{n}{\dfrac{\left( k-2 \right)!}{3!\left( k-4 \right)!}}=\dfrac{1}{\text{3C}_{n}^{4}}\sum\limits_{k=4}^{n}{\dfrac{\left( k-2 \right)!}{2!\left( k-4 \right)!}}=\dfrac{1}{\text{3C}_{n}^{4}}\sum\limits_{k=4}^{n}{\text{\rm {C}}_{k-2}^{2}}$,
又$\text{\rm {C}}_{n}^{m}+\text{\rm {C}}_{n}^{m-1}=\text{\rm {C}}_{n+1}^{m},\left( m,n\in {{\bf{N}}^{*}},n\ge m \right)$,
$\therefore \sum\limits_{k=4}^{n}{\text{\rm {C}}_{k-2}^{2}}=\text{\rm {C}}_{2}^{2}+\text{\rm {C}}_{3}^{2}+\text{\rm {C}}_{4}^{2}+\cdots +\text{\rm {C}}_{n-2}^{2}=\text{\rm {C}}_{3}^{3}+\text{\rm {C}}_{3}^{2}+\text{\rm {C}}_{4}^{2}+\cdots +\text{\rm {C}}_{n-2}^{2}$
$=\text{\rm {C}}_{4}^{3}+\text{\rm {C}}_{4}^{2}+\cdots +\text{\rm {C}}_{n-2}^{2}=\cdots =\text{\rm {C}}_{n-2}^{3}+\text{\rm {C}}_{n-2}^{2}=\text{\rm {C}}_{n-1}^{3}$,
$\therefore E\left( X \right)\lt \dfrac{1}{\text{3C}_{n}^{4}}\sum\limits_{k=4}^{n}{\text{\rm {C}}_{k-2}^{2}}=\dfrac{\text{\rm {C}}_{n-1}^{3}}{\text{3C}_{n}^{4}}=\dfrac{4}{3n}$$.$
| 4.2.3 二项分布与超几何分布题目答案及解析(完整版)