稿件来源:高途
| 8.6.2 直线与平面垂直题目答案及解析如下,仅供参考!
必修二
第八章 立体几何初步
8.6 空间直线、平面的垂直
8.6.2 直线与平面垂直
如图,在四棱锥${{P}-{ABCD}}$中,$AD//BC$,$AB\perp BC$,$AB=BC=1$,$AD=a\left( a\gt 1 \right)$,$PA\perp $平面$ABCD$,${ {PD}}$与平面$ABCD$所成角为$45{}^\circ $,$E$为${ {PD}}$中点,
$(1)$证明:$BE\perp PD$;
$(2)$若直线$PC$与平面$ABE$所成角为$60{}^\circ $,求$a$的值$.$
$(1)$证明见解析;
$(2)$$a=2$$.$
"]]$(1)$$\because AD//BC$,$AB\perp BC$,
$\therefore AD\perp AB$,
$\because PA\perp $平面$ABCD$,${ {PD}}$与平面$ABCD$所成角为$45{}^\circ $,
$\therefore \angle PDA$为${ {PD}}$与平面$ABCD$所成角,即$\angle PDA=45{}^\circ $,
则$PD=AD=a\left( a\gt 1 \right)$,又$AD,AB\subset $平面$ABCD$,
$\therefore PA\perp AD,PA\perp AB$,
$\therefore $ 可建立如图所示的空间直角坐标系$A-xyz$,
则由题$A\left( 0,0,0 \right),B\left( 1,0,0 \right),E\left( 0,\dfrac{a}{2},\dfrac{a}{2} \right),P\left( 0,0,a \right),D\left( 0,a,0 \right),C\left( 1,1,0 \right)$,
$\therefore \overrightarrow{BE}=\left( -1,\dfrac{a}{2},\dfrac{a}{2} \right),\overrightarrow{PD}=\left( 0,a,-a \right),\overrightarrow{PC}=\left( 1,1,-a \right)$,$\overrightarrow{AB}=\left( 1,0,0 \right)$,
$\therefore \overrightarrow{BE}\cdot \overrightarrow{PD}=\left( -1,\dfrac{a}{2},\dfrac{a}{2} \right)\cdot \left( 0,a,-a \right)=\dfrac{{{a}^{2}}}{2}-\dfrac{{{a}^{2}}}{2}=0$,
$\therefore \overrightarrow{BE}\perp \overrightarrow{PD}$,即$BE\perp PD$$.$
$(2)$设平面$ABE$的法向量为$\boldsymbol{n}=\left( x,y,z \right)$,
则$\begin{cases} \boldsymbol{n}\perp \overrightarrow{BE} \\ \boldsymbol{n}\perp \overrightarrow{AB} \\ \end{cases}$,
$\therefore \begin{cases} \boldsymbol{n}\cdot \overrightarrow{BE}=0 \\ \boldsymbol{n}\cdot \overrightarrow{AB}=0 \\ \end{cases}$,
$\therefore $ 由$(1)$得$\begin{cases} -x+\dfrac{a}{2}y+\dfrac{a}{2}z=0 \\ x=0 \\ \end{cases}$,
取$y=-1$,则$\boldsymbol{n}=\left( 0,-1,1 \right)$,又直线$PC$与平面$ABE$所成角为$60{}^\circ $,
$\therefore \sin 60{}^\circ =\left| \cos\langle \boldsymbol{n},\overrightarrow{PC} \rangle\right|=\left| \dfrac{\boldsymbol{n}\cdot \overrightarrow{PC}}{\left| {\boldsymbol{n}} \right|\left| \overrightarrow{PC} \right|} \right|=\dfrac{a+1}{\sqrt{{{1}^{2}}+{{1}^{2}}+{{\left( -a \right)}^{2}}}\sqrt{{{\left( -1 \right)}^{2}}+{{1}^{2}}}}$
$=\dfrac{a+1}{\sqrt{2{{a}^{2}}+4}}=\dfrac{\sqrt{3}}{2}$,解得$a=2$$.$
| 8.6.2 直线与平面垂直题目答案及解析(完整版)