稿件来源:高途
| 10.2 事件的相互独立性题目答案及解析如下,仅供参考!
必修二
第十章 概率
10.2 事件的相互独立性
投壶是从先秦延续至清末的中国传统礼仪和宴饮游戏,投壶礼来源于射礼.投壶的横截面是三个圆形,投掷者站在距离投壶一定距离的远处将箭羽投向三个圆形的壶口,若箭羽投进三个圆形壶口之一就算投中.为弘扬中华传统文化,某次文化活动进行了投壶比赛,比赛规定投进中间较大圆形壶口得$3$分,投进左右两个小圆形壶口得$1$分,没有投进壶口不得分.甲乙两人进行投壶比赛,比赛分为若干轮,每轮每人投一支箭羽,最后将各轮所得分数相加即为该人的比赛得分,比赛得分高的人获胜.已知甲每轮投一支箭羽进入中间大壶口的概率为$\dfrac{1}{3}$,投进入左右两个小壶口的概率都是$\dfrac{1}{6}$,乙每轮投一支箭羽进入中间大壶口的概率为$\dfrac{1}{4}$,投进入左右两个小壶口的概率分别是$\dfrac{1}{5}$和$\dfrac{1}{6}$,甲乙两人每轮是否投中相互独立,且两人各轮之间是否投中也互相独立.若在最后一轮比赛前,甲的总分落后乙$1$分,设甲最后一轮比赛的得分为$X$,乙最后一轮比赛的得分为$Y$.$(1)$求甲最后一轮结束后赢得比赛的概率;
$(2)$求$|X-Y|$的数学期望.
(1) $\\dfrac{1}{4}$
(2) $\\dfrac{233}{180}$
"]]$(1)$设甲一轮的得分为$\xi $,
则$P\left(\xi =1\right)=\dfrac{1}{6}×2=\dfrac{1}{3}$,$P\left(\xi =3\right)=\dfrac{1}{3}$,$P\left(\xi =0\right)=1-P\left(\xi =1\right)-P\left(\xi =3\right)=\dfrac{1}{3}$;
设乙一轮的得分为$\eta $,
则$P\left(\eta =1\right)=\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{11}{30}$,$P\left(\eta =3\right)=\dfrac{1}{4}$,$P\left(\eta =0\right)=1-P\left(\eta =1\right)-P\left(\eta =3\right)=\dfrac{23}{60}$;
则甲最后一轮反败为胜的概率$P=P\left(X=3,Y=0\right)+P\left(X=3,Y=1\right)=\dfrac{1}{3}×\dfrac{23}{60}+\dfrac{1}{3}×\dfrac{11}{30}=\dfrac{1}{4}$.
$(2)$由题意知:$|X-Y|$所有可能的取值为$0$,$1$,$2$,$3$,
$P\left(|X-Y|=0\right)=P\left(X=0,Y=0\right)+P\left(X=1,Y=1\right)+P\left(X=3,Y=3\right)=\dfrac{1}{3}×\dfrac{23}{60}+\dfrac{1}{3}×\dfrac{11}{30}+\dfrac{1}{3}×\dfrac{1}{4}=\dfrac{1}{3}$,
$P\left(|X-Y|=1\right)=P\left(X=0,Y=1\right)+P\left(X=1,Y=0\right)=\dfrac{1}{3}×\dfrac{11}{30}+\dfrac{1}{3}×\dfrac{23}{60}=\dfrac{1}{4}$,
$P\left(|X-Y|=2\right)=P\left(X=1,Y=3\right)+P\left(X=3,Y=1\right)=\dfrac{1}{3}×\dfrac{1}{4}+\dfrac{1}{3}×\dfrac{11}{30}=\dfrac{37}{180}$,
$P\left(|X-Y|=3\right)=P\left(X=0,Y=3\right)+P\left(X=3,Y=0\right)=\dfrac{1}{3}×\dfrac{1}{4}+\dfrac{1}{3}×\dfrac{23}{60}=\dfrac{19}{90}$,
$\therefore |X-Y|$的数学期望$E\left(|X-Y|\right)=0\times \dfrac{1}{3}+1\times \dfrac{1}{4}+2\times \dfrac{37}{180}+3\times \dfrac{19}{90}=\dfrac{233}{180}$.
| 10.2 事件的相互独立性题目答案及解析(完整版)