稿件来源:高途
| 8.6.2 直线与平面垂直题目答案及解析如下,仅供参考!
必修二
第八章 立体几何初步
8.6 空间直线、平面的垂直
8.6.2 直线与平面垂直
如图,四棱锥$P-ABCD$的底面是边长为$2$的正方形,平面$PAB\bot $平面$PCD$,$E$为$CD$的中点,$PE\bot CD$,$PE=1$.$(1)$证明:$PE\bot $平面$PAB$;
$(2)$求平面$PBC$与平面$PAE$的夹角的正弦值.
$(1)$ 证明见解析;
$(2)$ $\\dfrac{\\sqrt{42}}{7}$
$(1)$证明:因为四棱锥$P-ABCD$底面是边长为$2$的正方形,所以$AB//CD$,
因为$CD$⊄平面$PAB$,$AB\subset $平面$PAB$,所以$CD//$平面$PAB$,
设平面$PAB\cap $平面$PCD=PM$,则$PM//CD$,
因为$PE\bot CD$,所以$PE\bot PM$,
因为$PE\subset $平面$PCD$,平面$PAB\bot $平面$PCD$,
所以$PE\bot $平面$PAB$;,
$(2)$连接$BE$,因为$E$为$CD$中点,所以$|AE|=|BE|=\sqrt{{2}^{2}+{1}^{2}}=\sqrt{5}$,
由$PE\bot $平面$PAB$,$PA$,$PB\subset $平面$PAB$,所以$PE\bot PA$,$PE\bot PB$,
因为$|PE|=1$,$|PA|=|PB|=\sqrt{(\sqrt{5})^{2}-{1}^{2}}=2$,所以$\triangle PAB$为正三角形,
取$AB$中点$F$,连接$PF$,则$PF\bot AB$,所以$PF\bot PM$,
以$P$为坐标原点,$PF$,$PM$,$PE$所在直线分别为$x$,$y$,$z$轴建立空间直角坐标系,如图.
则$P\left(0,0,0\right),E\left(0,0,1\right),F\left(\sqrt{3},0,0\right)$,
$A\left(\sqrt{3},-1,0\right),B\left(\sqrt{3},1,0\right),C\left(0,1,1\right),D\left(0,-1,1\right)$,
所以$\overrightarrow{PB}=\left(\sqrt{3},1,0\right),\overrightarrow{PC}=\left(0,1,1\right),\overrightarrow{PA}=\left(\sqrt{3},-1,0\right),\overrightarrow{PE}=\left(0,0,1\right)$,
设平面$PBC$法向量为$\boldsymbol{m}=\left(x_{1},y_{1},z_{1}\right)$,
则$\left\{\begin{array}{l}\overrightarrow{PB}\cdot \boldsymbol{m}=0\\ \overrightarrow{PC}\cdot \boldsymbol{m}=0\end{array}\right.$,即$\left\{\begin{array}{l}\sqrt{3}x_{1}+y_{1}=0\\ y_{1}+z_{1}=0\end{array}\right.$,令$x_{1}=1$,则$y_{1}=-\sqrt{3},z=\sqrt{3}$,所以$\boldsymbol{m}=\left(1,-\sqrt{3},\sqrt{3}\right)$,
设平面$PAE$法向量为$\boldsymbol{n}=\left(x_{2},y_{2},z_{2}\right)$,
则$\left\{\begin{array}{l}\overrightarrow{PA}\cdot \boldsymbol{n}=0\\ \overrightarrow{PE}\cdot \boldsymbol{n}=0\end{array}\right.$,即$\left\{\begin{array}{l}\sqrt{3}x_{2}-y_{2}=0\\ z_{2}=0\end{array}\right.$,令$x_{2}=1,y_{2}=\sqrt{3},z_{2}=0$,所以$\boldsymbol{n}=\left(1,\sqrt{3},0\right)$,
设平面$PBC$与平面$PAE$夹角为$\theta $,由图可知$\theta $为锐角,
所以$\cos\theta =|\cos\lt \boldsymbol{m},\boldsymbol{n}\gt |=\dfrac{|\boldsymbol{m}\cdot \boldsymbol{n}|}{|\boldsymbol{m}||\boldsymbol{n}|}=\dfrac{|1-3|}{2×\sqrt{7}}=\dfrac{\sqrt{7}}{7}$,
所以$\sin\theta =\sqrt{1-{\cos}^{2}\theta }=\sqrt{1-\dfrac{1}{7}}=\dfrac{\sqrt{42}}{7}$,
所以平面$PBC$与平面$PAE$的夹角的正弦值为$\dfrac{\sqrt{42}}{7}$.
| 8.6.2 直线与平面垂直题目答案及解析(完整版)