| 动能定理的理解与一般应用 题目答案及解析

稿件来源:高途

| 动能定理的理解与一般应用题目答案及解析如下,仅供参考!

必修2

第七章 机械能守恒定律

7.7 动能和动能定理

动能定理的理解与一般应用

某小组的同学通过探讨设计了一套方案来测量动摩擦因数,实验装置如图甲所示,将足够长的木板固定在水平面上,固定有遮光条的滑块从光电门的右侧以某初速度向左运动,经过一段时间滑块静止在光电门的左侧某位置,测出遮光条经过光电门时的遮光时间$t$和滑块静止时遮光条到光电门的距离$x$,改变滑块的初速度,重复以上操作,已知重力加速度大小为$g$

实验前测得遮光条的宽度为$d$,含遮光条的滑块质量为$m$,则滑块经过光电门时的动能$E_{\rm k}=$                 (用给定的物理量符号表示)。

[["$\\dfrac{md^{2}}{2t^{2}}$"]]

滑块经过光电门时的速度大小$v= \dfrac{d}{t}$

由公式知$E_{\text{k}}=\dfrac{1}{2}mv^{2}$

代入得$E_{\text{k}}=\dfrac{1}{2}m\left( \dfrac{d}{t} \right)^{2}=\dfrac{md^{2}}{2t^{2}}$

实验时获得多组数据后,得出的图像如图乙所示,该图像的纵坐标为$x$,则横坐标为                 (填“ $\dfrac{1}{t}$”“ $t^{2}$”或“ $\dfrac{1}{t^{2}}$”)。若直线的斜率为$k$,则滑块与木板之间的动摩擦因数$\mu =$                 (用题中物理量的符号$d$$k$$g$表示)。

[["$\\dfrac{1}{t^{2}}$","$\\dfrac{d^{2}}{2gk}$"]]

根据动能定理有$- \mu mgx=0- \dfrac{1}{2}mv^{2}$

整理得$\mu=\dfrac{\dfrac{1}{2}mv^{2}}{mgx}=\dfrac{d^{2}}{2gxt^{2}}$

变形得$x=\dfrac{d^{2}}{2g\mu} \cdot \dfrac{1}{t^{2}}$

由表达式可知,横坐标为$\dfrac{1}{t^{2}}$

若直线的斜率为$k$,根据表达式可知,则滑块与木板之间的动摩擦因数为$\mu=\dfrac{d^{2}}{2gk}$

| 动能定理的理解与一般应用题目答案及解析(完整版)

去刷题
相关题库:
电子发生装置,产生初速度为的电子,经过加速电场的加速,进入偏转电场的运动,最后打在荧光屏上,加速电场两板间电势差为,偏转电场两板间电势差为且上板带负电,板长为,板间距为,偏转电场与荧光屏的距离为,知电子的质量为、电荷量为,其重力不计。分析: 一点电荷仅在电场力的作用下运动,其速度时间图像如图所示,其中和是电荷在电场中经过、两点的时刻,则下列说法中正确的是 如图所示,在竖直平面内一轻质弹力绳的一端固定于点,另一端经光滑孔钉连接质量为的小球,该球穿过与水平直杆(足够长)成角的直杆,两杆平滑连接。点、和在同一竖直线上,间距为弹力绳原长。将小球拉至与等高的位置由静止释放。当小球首次运动到斜杆底端点后,在水平方向与穿在直杆且静止于点、质量为的小球发生弹性碰撞。小球、与杆间的动摩擦因数均为,且最大静摩擦力等于滑动摩擦力。弹力绳始终在弹性限度内且满足胡克定律,劲度系数为,其弹性势能与伸长量的关系为。已知重力加速度为,间距为。 如图所示,足够长的传送带与水平面的夹角为,速率恒为,宽为的区域存在与传送带平面垂直向上的匀强磁场,磁感应强度大小为。边长为、质量为、电阻为的正方形线框置于传送带上,进入磁场前与传送带保持相对静止,线框边刚离开磁场区域时的速率恰为。若线框或边受到安培力,则其安培力大于。线框受到的最大静摩擦力等于滑动摩擦力,动摩擦因数,边始终平行于,重力加速度为。下列选项正确的是 年,我国阶段性建成并成功运行了“电磁橇”,创造了大质量电磁推进技术的世界最高速度纪录。一种两级导轨式电磁推进的原理如图所示,两间距为的平行长直光滑金属导轨固定在同一水平面内,导轨间垂直安放金属棒,电流从一导轨流入,经过金属棒,再从另一导轨流回(图中未画出电源)。两导轨电流在金属棒所在处产生的磁场可视为匀强磁场,磁感应强度与电流的关系为(为常量)。 如图为游乐场滑道的示意图,内壁光滑的水平半圆形管道与倾角的倾斜管道和水平直管道顺滑连接,管道的端离管道所在平面的高度,管道的跨度,离水面的高.质量的游客(可视为质点)从端静止滑下,游客与管道的动摩擦因数,与管道的动摩擦因数,游客经过点时速度大小不变,整个过程空气阻力不计,重力加速度取。(,)求:
今日推荐