稿件来源:高途
| 8.6.3 平面与平面垂直题目答案及解析如下,仅供参考!
必修二
第八章 立体几何初步
8.6 空间直线、平面的垂直
8.6.3 平面与平面垂直
如图,在四棱锥$P-ABCD$中,$AB//CD$,$CP\perp CD$,$CD=2AB=2$,$AP=AC=AD$.
$(1)$证明:平面$PBC\perp$平面$PCD$;
$(2)$已知$CP=\sqrt{2}BC=2$,$\overrightarrow{DQ}=\lambda \overrightarrow{DP}$,$\lambda \in [0,1]$.若平面$ABP$与平面$ACQ$夹角的余弦值为$\dfrac{\sqrt{3}}{6}$,求$\lambda$的值.
$(1)$证明见解析;
$(2)$$\\dfrac{1}{3}$
"]]$(1)$证明:如图,取$PC$,$PD$的中点分别为$E$,$F$,连接$BE$,$AF$,$EF$,$CF$,
$\therefore EF//CD$,且$EF=\dfrac{1}{2}CD$,
又$AB//CD$,$CD=2AB$,
$\therefore EF//AB$,且$EF=AB$,
$\therefore $ 四边形$ABEF$为平行四边形,
$\therefore AF//BE$,
$\because AP=AD$,$PF=DF$,
$\therefore AF\perp PD$,
$\because CP\perp CD$,$PF=DF$,
$\therefore CF=DF=PF$,
又$AP=AC$,
$\therefore \triangle PAF\overset{\Large∽}{=} \triangle CAF$,
$\therefore \angle CFA=\angle PFA=90^\circ$,即$AF\perp CF$.
又$PD\cap CF=F$,$PD$,$CF\subset$平面$PCD$,
$\therefore AF\perp$平面$PCD$,
$\therefore BE\perp$平面$PCD$.
又$BE\subset$平面$PBC$,
$\therefore $ 平面$PBC\perp$平面$PCD$.
$(2)$由$(1)$知,$BE\perp$平面$PCD$,
$\because EF$,$CP\subset$平面$PCD$,
$\therefore BE\perp EF$,$BE\perp CP$,
$\therefore \angle BEC=90^\circ$.
在$\rm{Rt}\triangle BEC$中,$CE=\dfrac{1}{2}CP=1$,$BC=\sqrt{2}$,
则$BE=\sqrt{B{C}^{2}-C{E}^{2}}=1$,则$AF=1$.
$\because CP\perp CD$,$EF//CD$,
$\therefore EF\perp CP$,
$\therefore CP$,$EF$,$BE$两两垂直,
以$E$为坐标原点,向量$\overrightarrow{EP}$,$\overrightarrow{EF}$,$\overrightarrow{EB}$的方向分别为$x$,$y$,$z$轴的正方向,
建立如图所示的空间直角坐标系,
则$A(0,1,1)$,$B(0,0,1)$,$P(1,0,0)$,$C(-1,0,0)$,$D(-1,2,0)$,
$\therefore \overrightarrow{BA}=(0,1,0)$,$\overrightarrow{BP}=(1,0,-1)$,
$\overrightarrow{CA}=(1,1,1)$,$\overrightarrow{CD}=(0,2,0)$,$\overrightarrow{DP}=(2,-2,0)$.
由$\overrightarrow{DQ}=\lambda \overrightarrow{DP}$,$\lambda \in [0,1]$,
得$\overrightarrow{CQ}=\overrightarrow{CD}+\overrightarrow{DQ}=\overrightarrow{CD}+\lambda \overrightarrow{DP}=(0,2,0)+\lambda (2,-2,0)=(2\lambda ,2-2\lambda ,0)$.
设平面$ABP$的法向量为$\boldsymbol{m}=({x}_{1},{y}_{1},{z}_{1})$,则$\begin{cases}{\boldsymbol{m}\cdot \overrightarrow{BA}={y}_{1}=0}\\ {\boldsymbol{m}\cdot \overrightarrow{BP}={x}_{1}-{z}_{1}=0}\end{cases}$,
取$x_{1}=1$,则$z_{1}=1$,得平面$ABP$的一个法向量为$\boldsymbol{m}=(1,0,1)$,
设平面$ACQ$的法向量为$\boldsymbol{n}=({x}_{2},{y}_{2},{z}_{2})$,
则$\begin{cases}{\boldsymbol{n}\cdot \overrightarrow{CA}={x}_{2}+{y}_{2}+{z}_{2}=0}\\ {\boldsymbol{n}\cdot \overrightarrow{CQ}=2\lambda {x}_{2}+(2-2\lambda ){y}_{2}=0}\end{cases}$,
取$x_{2}=1-\lambda$,则$y_{2}=-\lambda$,$z_{2}=2\lambda -1$,
$\therefore \boldsymbol{n}=(1-\lambda ,-\lambda ,2\lambda -1)$,
设平面$ABP$与平面$ACQ$的夹角为$\theta$,
则$\cos \theta =\vert \cos \langle \boldsymbol{m},\boldsymbol{n}\rangle \vert =\dfrac{\vert \boldsymbol{m}\cdot \boldsymbol{n}\vert }{\vert \boldsymbol{m}\vert \vert \boldsymbol{n}\vert }=\dfrac{\vert 1\times (1-\lambda )+0\times (-\lambda )+1\times (2\lambda -1)\vert }{\sqrt{{1}^{2}+{0}^{2}+{1}^{2}}\times \sqrt{(1-\lambda )^{2}+(-\lambda )^{2}+(2\lambda -1)^{2}}}=\dfrac{\sqrt{3}}{6}$,
解得$\lambda =\dfrac{1}{3}$,
故$\lambda$的值为$\dfrac{1}{3}$.
| 8.6.3 平面与平面垂直题目答案及解析(完整版)