| 8.6.3 平面与平面垂直 题目答案及解析

稿件来源:高途

| 8.6.3 平面与平面垂直题目答案及解析如下,仅供参考!

必修二

第八章 立体几何初步

8.6 空间直线、平面的垂直

8.6.3 平面与平面垂直

如图,在四棱锥$P-ABCD$中,$AB//CD$$CP\perp CD$$CD=2AB=2$$AP=AC=AD$

$(1)$证明:平面$PBC\perp$平面$PCD$

$(2)$已知$CP=\sqrt{2}BC=2$$\overrightarrow{DQ}=\lambda \overrightarrow{DP}$$\lambda \in [0,1]$.若平面$ABP$与平面$ACQ$夹角的余弦值为$\dfrac{\sqrt{3}}{6}$,求$\lambda$的值.

[["

$(1)$证明见解析;

$(2)$$\\dfrac{1}{3}$

"]]

$(1)$证明:如图,取$PC$$PD$的中点分别为$E$$F$,连接$BE$$AF$$EF$$CF$

$\therefore EF//CD$,且$EF=\dfrac{1}{2}CD$

$AB//CD$$CD=2AB$

$\therefore EF//AB$,且$EF=AB$

$\therefore $ 四边形$ABEF$为平行四边形,

$\therefore AF//BE$

$\because AP=AD$$PF=DF$

$\therefore AF\perp PD$

$\because CP\perp CD$$PF=DF$

$\therefore CF=DF=PF$

$AP=AC$

$\therefore \triangle PAF\overset{\Large∽}{=} \triangle CAF$

$\therefore \angle CFA=\angle PFA=90^\circ$,即$AF\perp CF$

$PD\cap CF=F$$PD$$CF\subset$平面$PCD$

$\therefore AF\perp$平面$PCD$

$\therefore BE\perp$平面$PCD$

$BE\subset$平面$PBC$

$\therefore $ 平面$PBC\perp$平面$PCD$

$(2)$$(1)$知,$BE\perp$平面$PCD$

$\because EF$$CP\subset$平面$PCD$

$\therefore BE\perp EF$$BE\perp CP$

$\therefore \angle BEC=90^\circ$

$\rm{Rt}\triangle BEC$中,$CE=\dfrac{1}{2}CP=1$$BC=\sqrt{2}$

$BE=\sqrt{B{C}^{2}-C{E}^{2}}=1$,则$AF=1$

$\because CP\perp CD$$EF//CD$

$\therefore EF\perp CP$

$\therefore CP$$EF$$BE$两两垂直,

$E$为坐标原点,向量$\overrightarrow{EP}$$\overrightarrow{EF}$$\overrightarrow{EB}$的方向分别为$x$$y$$z$轴的正方向,

建立如图所示的空间直角坐标系,

$A(0,1,1)$$B(0,0,1)$$P(1,0,0)$$C(-1,0,0)$$D(-1,2,0)$

$\therefore \overrightarrow{BA}=(0,1,0)$$\overrightarrow{BP}=(1,0,-1)$

$\overrightarrow{CA}=(1,1,1)$$\overrightarrow{CD}=(0,2,0)$$\overrightarrow{DP}=(2,-2,0)$

$\overrightarrow{DQ}=\lambda \overrightarrow{DP}$$\lambda \in [0,1]$

$\overrightarrow{CQ}=\overrightarrow{CD}+\overrightarrow{DQ}=\overrightarrow{CD}+\lambda \overrightarrow{DP}=(0,2,0)+\lambda (2,-2,0)=(2\lambda ,2-2\lambda ,0)$

设平面$ABP$的法向量为$\boldsymbol{m}=({x}_{1},{y}_{1},{z}_{1})$,则$\begin{cases}{\boldsymbol{m}\cdot \overrightarrow{BA}={y}_{1}=0}\\ {\boldsymbol{m}\cdot \overrightarrow{BP}={x}_{1}-{z}_{1}=0}\end{cases}$

$x_{1}=1$,则$z_{1}=1$,得平面$ABP$的一个法向量为$\boldsymbol{m}=(1,0,1)$

设平面$ACQ$的法向量为$\boldsymbol{n}=({x}_{2},{y}_{2},{z}_{2})$

$\begin{cases}{\boldsymbol{n}\cdot \overrightarrow{CA}={x}_{2}+{y}_{2}+{z}_{2}=0}\\ {\boldsymbol{n}\cdot \overrightarrow{CQ}=2\lambda {x}_{2}+(2-2\lambda ){y}_{2}=0}\end{cases}$

$x_{2}=1-\lambda$,则$y_{2}=-\lambda$$z_{2}=2\lambda -1$

$\therefore \boldsymbol{n}=(1-\lambda ,-\lambda ,2\lambda -1)$

设平面$ABP$与平面$ACQ$的夹角为$\theta$

$\cos \theta =\vert \cos \langle \boldsymbol{m},\boldsymbol{n}\rangle \vert =\dfrac{\vert \boldsymbol{m}\cdot \boldsymbol{n}\vert }{\vert \boldsymbol{m}\vert \vert \boldsymbol{n}\vert }=\dfrac{\vert 1\times (1-\lambda )+0\times (-\lambda )+1\times (2\lambda -1)\vert }{\sqrt{{1}^{2}+{0}^{2}+{1}^{2}}\times \sqrt{(1-\lambda )^{2}+(-\lambda )^{2}+(2\lambda -1)^{2}}}=\dfrac{\sqrt{3}}{6}$

解得$\lambda =\dfrac{1}{3}$

$\lambda$的值为$\dfrac{1}{3}$

| 8.6.3 平面与平面垂直题目答案及解析(完整版)

去刷题
今日推荐