| 8.6.3 平面与平面垂直 题目答案及解析

稿件来源:高途

| 8.6.3 平面与平面垂直题目答案及解析如下,仅供参考!

必修二

第八章 立体几何初步

8.6 空间直线、平面的垂直

8.6.3 平面与平面垂直

已知四棱柱$ABCD-A_{1}B_{1}C_{1}D_{1}$如图所示,底面$ABCD$为平行四边形,其中点$D$在平面$A_{1}B_{1}C_{1}D_{1}$内的投影为点$A_{1}$,且$AB=AA_{1}=2AD,\angle ABC=120^{\circ}$.
$(1)$求证:平面$A_{1}BD\bot $平面$ADD_{1}A_{1}$
$(2)$已知点$E$在线段$C_{1}D$上(不含端点位置),且平面$A_{1}BE$与平面$BCC_{1}B_{1}$的夹角的余弦值为$\dfrac{\sqrt{5}}{5}$,求$\dfrac{DE}{E{C}_{1}}$的值.

[["

$(1)$ 证明见解析
$(2)$ $\\dfrac{1}{3}$

"]]

$(1)$证明:四棱柱$ABCD-A_{1}B_{1}C_{1}D_{1}$如图所示,底面$ABCD$为平行四边形,
$D$在平面$A_{1}B_{1}C_{1}D_{1}$内的投影为点$A_{1}$,且$AB=AA_{1}=2AD,\angle ABC=120^{\circ}$.
$\because A_{1}D\bot $平面$ABCD$$AD\subset $平面$ABCD$$\therefore A_{1}D\bot AD$
$\triangle ADB$中,设$AB=2$$AD=1$$\angle DAB=60^{\circ}$
由余弦定理,得$BD^{2}=AB^{2}+AD^{2}-2AB\cdot AD\cdot \cos \angle DAB=2^{2}+1^{2}-2\times 2\times 1\times \cos 60^{\circ}=3,\therefore BD=\sqrt{3}$
$\therefore AD^{2}+BD^{2}=AB^{2}$$\therefore AD\bot DB$.
$\because A_{1}D\cap DB=D$$\therefore AD\bot $平面$A_{1}BD$
$\because AD\subset $平面$ADD_{1}A_{1}$$\therefore $平面$A_{1}BD\bot $平面$ADD_{1}A_{1}$.
$(2)$$(1)$知,$DA$$DB$$DA_{1}$两两垂直,以$D$为坐标原点,
分别以向量$\overrightarrow{DA},\overrightarrow{DB}$$\overrightarrow{D{A}_{1}}$的方向为$x$轴,$y$轴,$z$轴正方向,建立空间直角坐标系$D-xyz$,如图,

$D\left(0,0,0\right),A\left(1,0,0\right)$$B\left(0,\sqrt{3},0\right),{A}_{1}\left(0,0,\sqrt{3}\right),C\left(-1,\sqrt{3},0\right)$
$\overrightarrow{AC}=\left(-2,\sqrt{3},0\right),A_{1}C_{1}=AC,\therefore {C}_{1}\left(-2,\sqrt{3},\sqrt{3}\right)$
$\therefore \overrightarrow{{A}_{1}B}=\left(0,\sqrt{3},-\sqrt{3}\right),\overrightarrow{D{C}_{1}}=\left(-2,\sqrt{3},\sqrt{3}\right)$
$\overrightarrow{DE}=\lambda \overrightarrow{D{C}_{1}}\left(0\lt \lambda \lt 1\right)$,则$\overrightarrow{DE}=\lambda \overrightarrow{D{C}_{1}}=\left(-2\lambda ,\sqrt{3}\lambda ,\sqrt{3}\lambda \right)$,即$E\left(-2\lambda ,\sqrt{3}\lambda ,\sqrt{3}\lambda \right)$.
$\therefore \overrightarrow{{A}_{1}E}=\left(-2\lambda ,\sqrt{3}\lambda ,\sqrt{3}\lambda -\sqrt{3}\right)$
$\boldsymbol{n}=\left({x}_{1},{y}_{1},{z}_{1}\right)$为平面$A_{1}EB$的一个法向量,
$\left\{\begin{array}{c}\boldsymbol{n}\cdot \overrightarrow{{A}_{1}B}=0\\ \boldsymbol{n}\cdot \overrightarrow{{A}_{1}E}=0\end{array}\right.$$\left\{\begin{array}{c}\sqrt{3}{y}_{1}-\sqrt{3}{z}_{1}=0\\-2\lambda {x}_{1}+\sqrt{3}\lambda {y}_{1}+\left(\sqrt{3}\lambda -\sqrt{3}\right){z}_{1}=0\end{array}\right.$
$z_{1}=2\lambda $,得$\boldsymbol{n}=\left(2\sqrt{3}\lambda -\sqrt{3},2\lambda ,2\lambda \right)$
由题意得知$DB\bot $平面$BCC_{1}B_{1}$,故$\boldsymbol{m}=\left(0,1,0\right)$为平面$BCC_{1}B_{1}$的一个法向量;
设平面$A_{1}EB$与平面$BCC_{1}B_{1}$的夹角为$\alpha $
$E$在线段$C_{1}D$上(不含端点位置),且平面$A_{1}BE$与平面$BCC_{1}B_{1}$的夹角的余弦值为$\dfrac{\sqrt{5}}{5}$
$\cos\alpha =\dfrac{|\boldsymbol n\cdot \boldsymbol m|}{|\boldsymbol n|\cdot |\boldsymbol m|}=\dfrac{2\lambda }{\sqrt{20{\lambda }^{2}-12\lambda +3}}=\dfrac{\sqrt{5}}{5}$
解得$\lambda =\dfrac{1}{4}$,故$\dfrac{DE}{E{C}_{1}}=\dfrac{1}{3}$.

| 8.6.3 平面与平面垂直题目答案及解析(完整版)

去刷题
今日推荐