稿件来源:高途
| 1.8 三角函数的简单应用题目答案及解析如下,仅供参考!
必修二
第一章 三角函数
1.8 三角函数的简单应用
如图,扇形钢板$POQ$的半径为$1m$,圆心角为$60^{\circ}$.现要从中截取一块四边形钢板$ABCO$.其中顶点$B$在扇形$POQ$的弧$\widehat {PQ}$上,$A$,$C$分别在半径$OP$,$OQ$上,且$AB\bot OP$,$BC\bot OQ$.
$(1)$设$\angle AOB=\theta $,试用$\theta $表示截取的四边形钢板$ABCO$的面积$S\left(\theta \right)$,并指出$\theta $的取值范围;
$(2)$求当$\theta $为何值时,截取的四边形钢板$ABCO$的面积最大.
$(1)$$S(\\theta )=\\dfrac{1}{4}[\\sin2\\theta +\\sin(\\dfrac{{2\\pi }}{3}-2\\theta )]$,$\\theta ∈(0,\\dfrac{\\pi }{3})$
$(2)$$\\theta =\\dfrac{\\pi }{6}$时,$\\dfrac{{\\sqrt{3}}}{4}{m^2}$$.$
"]]$(1)$因为$\angle AOB=\theta $,扇形钢板$POQ$的圆心角为$60^{\circ}$,所以$∠BOC=\dfrac{\pi }{3}-\theta $,
因为扇形钢板$POQ$的半径为$1m$,$AB\bot OP$,$BC\bot OQ$,
所以$OA=\cos \theta $,$AB=\sin \theta $,
所以${S_{△OAB}}=\dfrac{1}{2}OA\cdot AB=\dfrac{1}{2}\sin\theta \cos\theta =\dfrac{1}{4}\sin2\theta $,
又$OC=\cos(\dfrac{\pi }{3}-\theta )$,$BC=\sin(\dfrac{\pi }{3}-\theta )$,
所以${S_{△OBC}}=\dfrac{1}{2}OC\cdot BC=\dfrac{1}{2}\cos(\dfrac{\pi }{3}-\theta )\sin(\dfrac{\pi }{3}-\theta )=\dfrac{1}{4}\sin(\dfrac{{2\pi }}{3}-2\theta )$,
所以四边形钢板$ABCO$的面积$S(\theta )={S_{△OAB}}+{S_{△OBC}}=\dfrac{1}{4}[\sin2\theta +\sin(\dfrac{{2\pi }}{3}-2\theta )]$,$\theta ∈(0,\dfrac{\pi }{3})$,
其中$\theta $的取值范围为$(0,\dfrac{\pi }{3})$.
$(2)S(\theta )=\dfrac{1}{4}[\sin2\theta +\sin(\dfrac{{2\pi }}{3}-2\theta )]=\dfrac{1}{4}(\sin2\theta +\dfrac{{\sqrt{3}}}{2}\cos2\theta +\dfrac{1}{2}\sin2\theta )=\dfrac{1}{4}(\dfrac{3}{2}\sin2\theta +\dfrac{{\sqrt{3}}}{2}\cos2\theta )=\dfrac{{\sqrt{3}}}{4}(\dfrac{{\sqrt{3}}}{2}\sin2\theta +\dfrac{1}{2}\cos2\theta )=\dfrac{{\sqrt{3}}}{4}\sin(2\theta +\dfrac{\pi }{6})$,
因为$\theta ∈(0,\dfrac{\pi }{3})$,所以$2\theta +\dfrac{\pi }{6}∈(\dfrac{\pi }{6},\dfrac{{5\pi }}{6})$,
所以当$2\theta +\dfrac{\pi }{6}=\dfrac{\pi }{2}$,即$\theta =\dfrac{\pi }{6}$时,四边形钢板$ABCO$的面积$S\left(\theta \right)$最大,最大值为$\dfrac{{\sqrt{3}}}{4}{m^2}$.
| 1.8 三角函数的简单应用题目答案及解析(完整版)