| 8.3.1 棱柱、棱锥、棱台的表面积和体积 题目答案及解析

稿件来源:高途

| 8.3.1 棱柱、棱锥、棱台的表面积和体积题目答案及解析如下,仅供参考!

必修二

第八章 立体几何初步

8.3 简单几何体的表面积与体积

8.3.1 棱柱、棱锥、棱台的表面积和体积

在棱长为$2$的正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$中,$E$$F$分别为棱$AB$$AA_{1}$的中点,点$P$在对角线$A_{1}B$上,则$(\qquad)$

["

$AP+D_{1}P$的最小值为$2\\sqrt{2+\\sqrt{2}}$

","

三棱锥$P-CEF$体积为$\\dfrac{1}{3}$

","

$P$到平面$CEF$的距离为$\\dfrac{1}{6}$

","

四面体$BCEF$外接球的表面积为$14\\pi$

"]
[["ABD"]]

根据题意,可作图如下:

对于$\rm A$,在正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$中,易知$A_{1}D_{1}\perp$平面$ABB_{1}A_{1}$

$\because A_{1}B\subset$平面$ABB_{1}A_{1}$

$\therefore A_{1}D_{1}\perp A_{1}B$

将点$D_{1}$$A_{1}B$旋转得到$D_{1}$,使$A$$P$$D_{1}$共面,如下图:

易知$AP+D_{1}P\geqslant AD_{1}$,在$\triangle $$AA_{1}D_{1}$中,易知$\angle AA_{1}D_{1}=135^\circ$

由余弦定理,$A{\rm {D}}_{1}^{2}=A{\rm {A}}_{1}^{2}+{A}_{1}{\rm {D}}_{1}^{2}-2A{A}_{1}\cdot {A}_{1}{D}_{1}\cdot \cos \angle A{A}_{1}{D}_{1}=4+4-2\times 2\times 2\times \left(-\dfrac{\sqrt{2}}{2}\right)=8+4\sqrt{2}$

$A{D}_{1}=2\sqrt{2+\sqrt{2}}$,故$\rm A$正确;

对于$\rm B$,在正方体中$ABCD-A_{1}B_{1}C_{1}D_{1}$$CB\perp AB$$CB\perp$平面$ABB_{1}A_{1}$

在三棱锥$P-CEF$中,以$\triangle PEF$为底面,则$CB$为其高,

$\because P\in A_{1}B$,易知$\triangle ABA_{1}$为等腰直角三角形,且$E$$F$分别为$A_{1}A$$AB$的中点,

$\therefore EF//A_{1}B$,且$P$$EF$的距离为$\dfrac{1}{4}{A}_{1}B=\dfrac{1}{4}\times \sqrt{2}AB=\dfrac{\sqrt{2}}{2}$

$\therefore {V}_{P-CEF}=\dfrac{1}{3}CB\cdot {S}_{\triangle PEF}=\dfrac{1}{3}\times 2\times \dfrac{1}{2}\times \sqrt{2}\times \dfrac{\sqrt{2}}{2}=\dfrac{1}{3}$,故$\rm B$正确;

对于$\rm C$,在${\rm Rt}\triangle BCE$中,易知$BE=1$$BC=2$,则$CE=\sqrt{C{B}^{2}+B{E}^{2}}=\sqrt{5}$

${\rm Rt}\triangle AEF$中,易知$AE=AF=1$,则$EF=\sqrt{2}$

${\rm Rt}\triangle ACF$中,易知$AC=2\sqrt{2}$$AF=1$,则$CF=\sqrt{A{F}^{2}+A{C}^{2}}=3$

$\triangle CEF$中,由余弦定理,$\cos \angle CEF=\dfrac{C{E}^{2}+E{F}^{2}-C{F}^{2}}{2\times CE\times EF}=-\dfrac{\sqrt{10}}{10}$

$\sin \angle CEF=\dfrac{3\sqrt{10}}{10}$

$\therefore {S}_{\triangle CEF}=\dfrac{1}{2}EF\cdot CE\sin \angle CEF=\dfrac{3}{2}$

$P$到平面$CEF$的距离为$\dfrac{3{V}_{P-CEF}}{{S}_{\triangle CEF}}=\dfrac{3\times \dfrac{1}{3}}{\dfrac{3}{2}}=\dfrac{2}{3}$

即点$P$到平面$CEF$的距离为$\dfrac{2}{3}$,故$\rm C$不正确;

对于$\rm D$,取$EC$的中点$M$,易知$M$${\rm Rt}\triangle BCE$的外接圆圆心,连接$AM$

$NM//AA_{1}$$FN//AM$,取$O\in MN$,连接$OE$$OF$,如下图:

$\because NM//AA_{1}$

$\therefore MN\perp$平面$BCE$,由$M$$\rm{Rt}\triangle BCE$的外接圆圆心,

则可设$O$为三棱锥$F-BCE$的外接球球心,即$OE=OF=R$

$\because FN//AM$

$\therefore $ 易知四边形$AMNF$为矩形,则$AM=FN$$MN\perp FN$

$\triangle AEM$中,由余弦定理得:$A{M}^{2}=A{E}^{2}+E{M}^{2}-2AE\cdot EM\cos \angle AEM=\dfrac{13}{4}$

${\rm Rt}\triangle BCE$中,$\cos \angle CEB=\dfrac{BE}{CE}=\dfrac{\sqrt{5}}{5}$,易知$\angle AEC=\pi -\angle CEB$,则$\cos \angle AEC=-\dfrac{\sqrt{5}}{5}$

${\rm Rt}\triangle MOE$中,$O{E}^{2}=M{E}^{2}+M{O}^{2},OM=\sqrt{O{E}^{2}-M{E}^{2}}=\sqrt{{R}^{2}-\dfrac{5}{4}}$

${\rm Rt}\triangle MOF$中,$OF^{2}=ON^{2}+FN^{2}$$OF^{2}=FN^{2}+(1-OM)^{2}$

${R}^{2}=\dfrac{13}{4}+\left(1-\sqrt{{R}^{2}-\dfrac{5}{4}}\right)^{2}$,解得${R}^{2}=\dfrac{7}{2}$,则球的表面积为$S=4\pi R^{2}=12\pi$,故$\rm D$正确.

故选:$\rm ABD$

| 8.3.1 棱柱、棱锥、棱台的表面积和体积题目答案及解析(完整版)

去刷题
今日推荐