稿件来源:高途
| 8.3.1 棱柱、棱锥、棱台的表面积和体积题目答案及解析如下,仅供参考!
必修二
第八章 立体几何初步
8.3 简单几何体的表面积与体积
8.3.1 棱柱、棱锥、棱台的表面积和体积
在棱长为$2$的正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$中,$E$,$F$分别为棱$AB$,$AA_{1}$的中点,点$P$在对角线$A_{1}B$上,则$(\qquad)$.
$AP+D_{1}P$的最小值为$2\\sqrt{2+\\sqrt{2}}$
","三棱锥$P-CEF$体积为$\\dfrac{1}{3}$
","点$P$到平面$CEF$的距离为$\\dfrac{1}{6}$
","四面体$BCEF$外接球的表面积为$14\\pi$
"]根据题意,可作图如下:
对于$\rm A$,在正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$中,易知$A_{1}D_{1}\perp$平面$ABB_{1}A_{1}$,
$\because A_{1}B\subset$平面$ABB_{1}A_{1}$,
$\therefore A_{1}D_{1}\perp A_{1}B$,
将点$D_{1}$绕$A_{1}B$旋转得到$D_{1}$,使$A$,$P$,$D_{1}$共面,如下图:
易知$AP+D_{1}P\geqslant AD_{1}$,在$\triangle $$AA_{1}D_{1}$中,易知$\angle AA_{1}D_{1}=135^\circ$,
由余弦定理,$A{\rm {D}}_{1}^{2}=A{\rm {A}}_{1}^{2}+{A}_{1}{\rm {D}}_{1}^{2}-2A{A}_{1}\cdot {A}_{1}{D}_{1}\cdot \cos \angle A{A}_{1}{D}_{1}=4+4-2\times 2\times 2\times \left(-\dfrac{\sqrt{2}}{2}\right)=8+4\sqrt{2}$,
则$A{D}_{1}=2\sqrt{2+\sqrt{2}}$,故$\rm A$正确;
对于$\rm B$,在正方体中$ABCD-A_{1}B_{1}C_{1}D_{1}$,$CB\perp AB$,$CB\perp$平面$ABB_{1}A_{1}$,
在三棱锥$P-CEF$中,以$\triangle PEF$为底面,则$CB$为其高,
$\because P\in A_{1}B$,易知$\triangle ABA_{1}$为等腰直角三角形,且$E$,$F$分别为$A_{1}A$,$AB$的中点,
$\therefore EF//A_{1}B$,且$P$到$EF$的距离为$\dfrac{1}{4}{A}_{1}B=\dfrac{1}{4}\times \sqrt{2}AB=\dfrac{\sqrt{2}}{2}$,
$\therefore {V}_{P-CEF}=\dfrac{1}{3}CB\cdot {S}_{\triangle PEF}=\dfrac{1}{3}\times 2\times \dfrac{1}{2}\times \sqrt{2}\times \dfrac{\sqrt{2}}{2}=\dfrac{1}{3}$,故$\rm B$正确;
对于$\rm C$,在${\rm Rt}\triangle BCE$中,易知$BE=1$,$BC=2$,则$CE=\sqrt{C{B}^{2}+B{E}^{2}}=\sqrt{5}$,
在${\rm Rt}\triangle AEF$中,易知$AE=AF=1$,则$EF=\sqrt{2}$,
在${\rm Rt}\triangle ACF$中,易知$AC=2\sqrt{2}$,$AF=1$,则$CF=\sqrt{A{F}^{2}+A{C}^{2}}=3$,
在$\triangle CEF$中,由余弦定理,$\cos \angle CEF=\dfrac{C{E}^{2}+E{F}^{2}-C{F}^{2}}{2\times CE\times EF}=-\dfrac{\sqrt{10}}{10}$,
则$\sin \angle CEF=\dfrac{3\sqrt{10}}{10}$,
$\therefore {S}_{\triangle CEF}=\dfrac{1}{2}EF\cdot CE\sin \angle CEF=\dfrac{3}{2}$,
点$P$到平面$CEF$的距离为$\dfrac{3{V}_{P-CEF}}{{S}_{\triangle CEF}}=\dfrac{3\times \dfrac{1}{3}}{\dfrac{3}{2}}=\dfrac{2}{3}$,
即点$P$到平面$CEF$的距离为$\dfrac{2}{3}$,故$\rm C$不正确;
对于$\rm D$,取$EC$的中点$M$,易知$M$为${\rm Rt}\triangle BCE$的外接圆圆心,连接$AM$,
作$NM//AA_{1}$,$FN//AM$,取$O\in MN$,连接$OE$,$OF$,如下图:
$\because NM//AA_{1}$,
$\therefore MN\perp$平面$BCE$,由$M$为$\rm{Rt}\triangle BCE$的外接圆圆心,
则可设$O$为三棱锥$F-BCE$的外接球球心,即$OE=OF=R$,
$\because FN//AM$,
$\therefore $ 易知四边形$AMNF$为矩形,则$AM=FN$,$MN\perp FN$,
在$\triangle AEM$中,由余弦定理得:$A{M}^{2}=A{E}^{2}+E{M}^{2}-2AE\cdot EM\cos \angle AEM=\dfrac{13}{4}$,
在${\rm Rt}\triangle BCE$中,$\cos \angle CEB=\dfrac{BE}{CE}=\dfrac{\sqrt{5}}{5}$,易知$\angle AEC=\pi -\angle CEB$,则$\cos \angle AEC=-\dfrac{\sqrt{5}}{5}$,
在${\rm Rt}\triangle MOE$中,$O{E}^{2}=M{E}^{2}+M{O}^{2},OM=\sqrt{O{E}^{2}-M{E}^{2}}=\sqrt{{R}^{2}-\dfrac{5}{4}}$,
在${\rm Rt}\triangle MOF$中,$OF^{2}=ON^{2}+FN^{2}$,$OF^{2}=FN^{2}+(1-OM)^{2}$,
则${R}^{2}=\dfrac{13}{4}+\left(1-\sqrt{{R}^{2}-\dfrac{5}{4}}\right)^{2}$,解得${R}^{2}=\dfrac{7}{2}$,则球的表面积为$S=4\pi R^{2}=12\pi$,故$\rm D$正确.
故选:$\rm ABD$
| 8.3.1 棱柱、棱锥、棱台的表面积和体积题目答案及解析(完整版)