稿件来源:高途
| 4.1.1 条件概率题目答案及解析如下,仅供参考!
选择性必修二
第四章 概率与统计
4.1 条件概率与事件的独立性
4.1.1 条件概率
设$A$,$B$为同一随机试验中的两个随机事件,则下列命题正确的是$ $ $(\qquad)$ $ $
若$P\\left({A∪B}\\right)=1,P\\left({A\\overline{B}}\\right)=\\dfrac{1}{4},P\\left({\\overline{A}B}\\right)=\\dfrac{3}{4}$,则A,B相互对立
","若$P\\left({A∪B}\\right)=1,P\\left({A\\overline{B}}\\right)=\\dfrac{1}{4},P\\left({\\overline{A}B}\\right)=\\dfrac{1}{2}$,则$P(A)=\\dfrac{3}{4}$
","若$P(A)=\\dfrac{2}{5},P\\left({\\overline{A}B}\\right)=\\dfrac{1}{4}$,则$P\\left({B|\\overline{A}}\\right)=\\dfrac{5}{{12}}$
","若$P(A)=\\dfrac{2}{5},P\\left({A|\\overline{B}}\\right)=\\dfrac{1}{3},P\\left({A|B}\\right)=\\dfrac{2}{3}$,则$P(B)=\\dfrac{3}{5}$
"]$\rm A$,$\rm B$为同一随机试验中的两个随机事件,
对于$\rm A$,由$P\left(A\cup B\right)=1$,得:
$P\left(A\bar{B}+\bar{A}B+AB\right)=P\left(A\bar{B}\right)+P\left(\bar{A}B\right)+P\left(AB\right)=1$,
又$P\left(A\bar{B}\right)=\dfrac{1}{4}$,则$P\left(\bar{A}B\right)+P\left(AB\right)=\dfrac{3}{4}$,
由$P\left(\bar{A}B\right)=\dfrac{3}{4}$可知,$P\left(AB\right)=0$,即$A\cap B=\varnothing $,
又$A\cup B=\Omega $,$\therefore A$,$B$相互对立,故$\rm A$正确;
对于$\rm B$,由题意知$P\left({AB}\right)=1-\dfrac{1}{2}-\dfrac{1}{4}=\dfrac{1}{4}$,
$\therefore P(A)=P\left(AB+A\bar{B}\right)=P\left(AB\right)+P\left(A\bar{B}\right)=\dfrac{1}{2}$,故$\rm B$错误;
对于$\rm C$,由$P(A)=\dfrac{2}{5}$,得$P\left(\bar{A}\right)=\dfrac{3}{5},P\left(B|\bar{A}\right)=\dfrac{{P\left(\bar{A}B\right)}}{{P\left(\bar{A}\right)}}=\dfrac{5}{{12}}$,
$\therefore $若$P(A)=\dfrac{2}{5},P\left({\overline{A}B}\right)=\dfrac{1}{4}$,则$P\left({B|\overline{A}}\right)=\dfrac{5}{{12}}$,故$\rm C$正确;
对于$\rm D$,由$P(A)=P(B)P\left(A|B\right)+P\left(\bar{B}\right)P\left(A|\bar{B}\right)$,得$\dfrac{2}{5}=\dfrac{2}{3}P(B)+\dfrac{1}{3}({1-P(B)})$,
解得$P(B)=\dfrac{1}{5}$,故$\rm D$错误.
故选:$\rm AC $.
| 4.1.1 条件概率题目答案及解析(完整版)