稿件来源:高途
| 4.1.1 条件概率题目答案及解析如下,仅供参考!
选择性必修二
第四章 概率与统计
4.1 条件概率与事件的独立性
4.1.1 条件概率
已知$P(A)=\dfrac{1}{5}$,$P(B|A)=\dfrac{1}{2}$,$P(\overline{B}|\overline{A})=\dfrac{5}{8}$,则$P\left(B\right)= $ $(\qquad)$ $ $.
$\\dfrac{2}{5}$
","$\\dfrac{1}{6}$
","$\\dfrac{1}{5}$
","$\\dfrac{3}{8}$
"]$\because P(A)=\dfrac{1}{5}$,$P(B|A)=\dfrac{1}{2}$,
$\therefore P\left(AB\right)=P\left(A\right)P\left(B|A\right)=\dfrac{1}{5}×\dfrac{1}{2}=\dfrac{1}{10}$,
$\because P(\overline{A})=1-P\left(A\right)=\dfrac{4}{5}$,$P(\overline{B}|\overline{A})=\dfrac{5}{8}$,
$\therefore P(\overline{A}\overline{B})=P(\overline{A})P(\overline{B}|\overline{A})=\dfrac{4}{5}×\dfrac{5}{8}=\dfrac{1}{2}$,
$\therefore P\left(A\cup B\right)=1-P(\overline{A}\overline{B})=\dfrac{1}{2}$,
又$\because P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(AB\right)$,
$\therefore P\left(B\right)=P\left(A\cup B\right)+P\left(AB\right)-P\left(A\right)=\dfrac{1}{2}+\dfrac{1}{10}-\dfrac{1}{5}=\dfrac{2}{5}$.
故选:$\rm A $
| 4.1.1 条件概率题目答案及解析(完整版)