| 4.4 幂函数 题目答案及解析

稿件来源:高途

| 4.4 幂函数题目答案及解析如下,仅供参考!

必修二

第四章 指数函数、对数函数与幂函数

4.4 幂函数

已知幂函数$f\left( x \right)={{x}^{\alpha }}$的图象经过点$\left( 2,\dfrac{1}{4} \right)$,若$a=f\left( \sin\dfrac{4\pi}{7} \right)$$b=f\left( \cos\dfrac{4\pi}{7} \right)$$c=f\left( \tan\dfrac{4\pi}{7} \right)$,则$(\qquad)$

["

$c\\lt a\\lt b$

","

$b\\lt c\\lt a$

","

$a\\lt b\\lt c$

","

$a\\lt c\\lt b$

"]
[["A"]]

$\because $ 幂函数$f\left( x \right)={{x}^{\alpha }}$的图象经过点$\left( 2,\dfrac{1}{4} \right)$

$\therefore {{2}^{\alpha }}=\dfrac{1}{4}$

$\therefore \alpha=-2$

$\therefore f\left( x \right)={{x}^{-2}}$

其定义域为$\left( -\infty ,0 \right)\cup \left( 0,+\infty \right)$关于原点对称,又$f\left( -x \right)={{\left( -x \right)}^{-2}}={{x}^{-2}}=f\left( x \right)$

$\therefore f\left( x \right)={{x}^{-2}}$为偶函数,且在$\left( 0,+\infty \right)$上单调递减,

$a=f\left( \sin\dfrac{4\pi}{7} \right)=f\left( \sin\dfrac{3\pi}{7} \right)$$b=f\left( \cos\dfrac{4\pi}{7} \right)=f\left( -\cos\dfrac{3\pi}{7} \right)=f\left( \cos\dfrac{3\pi}{7} \right)=f\left( \sin\dfrac{\pi}{14} \right)$

$c=f\left( \tan\dfrac{4\pi}{7} \right)=f\left( -\tan\dfrac{3\pi}{7} \right)=f\left( \tan\dfrac{3\pi}{7} \right)$

$\because y=\sin x$$\left( 0,\dfrac{\pi}{2} \right)$内单调递增,则$\sin\dfrac{\pi}{14}\lt \sin\dfrac{\text{3 }\!\!\pi}{7}$

$\because 0\lt \sin\dfrac{\text{3 }\!\!\pi}{7}\lt 1$$0\lt \cos \dfrac{\text{3 }\!\!\pi}{7}\lt 1$,则$\tan\dfrac{\text{3 }\!\!\pi}{7}=\dfrac{\sin \dfrac{\text{3 }\!\!\pi}{7}}{\cos \dfrac{\text{3 }\!\!\pi}{7}}\gt \sin \dfrac{\text{3 }\!\!\pi}{7}$

$\therefore \tan\dfrac{\text{3 }\!\!\pi}{7}\gt \sin \dfrac{\text{3 }\!\!\pi}{7}\gt \sin \dfrac{\pi}{14}\gt 0$

$\therefore f\left( \tan\dfrac{3\pi}{7} \right)\lt f\left( \sin\dfrac{3\pi}{7} \right)\lt f\left( \sin\dfrac{\pi}{14} \right)$

$\therefore f\left( \tan\dfrac{4\pi}{7} \right)\lt f\left( \sin\dfrac{4\pi}{7} \right)\lt f\left( \cos\dfrac{\text{4 }\!\!\pi}{7} \right)$,即$c\lt a\lt b$

故选:$\rm A$

| 4.4 幂函数题目答案及解析(完整版)

去刷题
今日推荐