稿件来源:高途
| 4.4 幂函数题目答案及解析如下,仅供参考!
必修二
第四章 指数函数、对数函数与幂函数
4.4 幂函数
已知幂函数$f\left( x \right)={{x}^{\alpha }}$的图象经过点$\left( 2,\dfrac{1}{4} \right)$,若$a=f\left( \sin\dfrac{4\pi}{7} \right)$,$b=f\left( \cos\dfrac{4\pi}{7} \right)$,$c=f\left( \tan\dfrac{4\pi}{7} \right)$,则$(\qquad)$.
$c\\lt a\\lt b$
","$b\\lt c\\lt a$
","$a\\lt b\\lt c$
","$a\\lt c\\lt b$
"]$\because $ 幂函数$f\left( x \right)={{x}^{\alpha }}$的图象经过点$\left( 2,\dfrac{1}{4} \right)$,
$\therefore {{2}^{\alpha }}=\dfrac{1}{4}$,
$\therefore \alpha=-2$,
$\therefore f\left( x \right)={{x}^{-2}}$,
其定义域为$\left( -\infty ,0 \right)\cup \left( 0,+\infty \right)$关于原点对称,又$f\left( -x \right)={{\left( -x \right)}^{-2}}={{x}^{-2}}=f\left( x \right)$,
$\therefore f\left( x \right)={{x}^{-2}}$为偶函数,且在$\left( 0,+\infty \right)$上单调递减,
$a=f\left( \sin\dfrac{4\pi}{7} \right)=f\left( \sin\dfrac{3\pi}{7} \right)$,$b=f\left( \cos\dfrac{4\pi}{7} \right)=f\left( -\cos\dfrac{3\pi}{7} \right)=f\left( \cos\dfrac{3\pi}{7} \right)=f\left( \sin\dfrac{\pi}{14} \right)$,
$c=f\left( \tan\dfrac{4\pi}{7} \right)=f\left( -\tan\dfrac{3\pi}{7} \right)=f\left( \tan\dfrac{3\pi}{7} \right)$,
$\because y=\sin x$在$\left( 0,\dfrac{\pi}{2} \right)$内单调递增,则$\sin\dfrac{\pi}{14}\lt \sin\dfrac{\text{3 }\!\!\pi}{7}$,
又$\because 0\lt \sin\dfrac{\text{3 }\!\!\pi}{7}\lt 1$,$0\lt \cos \dfrac{\text{3 }\!\!\pi}{7}\lt 1$,则$\tan\dfrac{\text{3 }\!\!\pi}{7}=\dfrac{\sin \dfrac{\text{3 }\!\!\pi}{7}}{\cos \dfrac{\text{3 }\!\!\pi}{7}}\gt \sin \dfrac{\text{3 }\!\!\pi}{7}$,
$\therefore \tan\dfrac{\text{3 }\!\!\pi}{7}\gt \sin \dfrac{\text{3 }\!\!\pi}{7}\gt \sin \dfrac{\pi}{14}\gt 0$,
$\therefore f\left( \tan\dfrac{3\pi}{7} \right)\lt f\left( \sin\dfrac{3\pi}{7} \right)\lt f\left( \sin\dfrac{\pi}{14} \right)$,
$\therefore f\left( \tan\dfrac{4\pi}{7} \right)\lt f\left( \sin\dfrac{4\pi}{7} \right)\lt f\left( \cos\dfrac{\text{4 }\!\!\pi}{7} \right)$,即$c\lt a\lt b$.
故选:$\rm A$
| 4.4 幂函数题目答案及解析(完整版)