稿件来源:高途
| 4.4 幂函数题目答案及解析如下,仅供参考!
必修二
第四章 指数函数、对数函数与幂函数
4.4 幂函数
幂函数$y={{x}^{\alpha }}$,当$\alpha $取不同的正数时,在区间$\left\lbrack {0,1}\right\rbrack$上它们的图像是一族美丽的曲线(如图).设点$A\left( 1,0 \right)$,$B\left( 0,1 \right)$,连接$AB$,线段$AB$恰好被其中的两个幂函数$f\left( x \right)={{x}^{a}}$,$g\left( x \right)={{x}^{b}}$的图像三等分,即有$AN=NM=MB$.
$(1)$写出点$M$、$N$的坐标并求$ab$的值;
$(2)$函数$h\left( x \right)={{\text{e}}^{abx}}-{{\text{e}}^{-abx}}$.
$($i$)$指明函数单调性和奇偶性(无需证明);
$($ⅱ$)$若对任意$x\gt 0$,$\theta \in \left[ 0,\dfrac{\pi}{2} \right]$,不等式:$h\left( \left( {{t}^{2}}-1 \right)x \right)+h\left( t\left( {{x}^{2}}+2 \right)\sin \left( \theta +\dfrac{5\pi}{4} \right) \right)\leqslant 0$恒成立,求正数$t$的取值范围.
$(1)$$M\\left( \\dfrac{1}{3},\\dfrac{2}{3} \\right)$,$N\\left( \\dfrac{2}{3},\\dfrac{1}{3} \\right)$,$ab=1$;
$(2)$$($i$)$答案见解析;$($ⅱ$)$$0\\lt t\\leqslant 1+\\sqrt{2}$
"]]$(1)$由图可得$M\left( \dfrac{1}{3},\dfrac{2}{3} \right)$,$N\left( \dfrac{2}{3},\dfrac{1}{3} \right)$,
$∴{{\left( \dfrac{1}{3} \right)}^{a}}=\dfrac{2}{3}$,${{\left( \dfrac{2}{3} \right)}^{b}}=\dfrac{1}{3}$,
$∴$$a={{\log }_{\tfrac{1}{3}}}\dfrac{2}{3}$,$b={{\log }_{\tfrac{2}{3}}}\dfrac{1}{3}$,
$∴$$ab={{\log }_{\tfrac{1}{3}}}\dfrac{2}{3}\times {{\log }_{\tfrac{2}{3}}}\dfrac{1}{3}=\dfrac{\lg \dfrac{2}{3}}{\lg \dfrac{1}{3}}\times \dfrac{\lg \dfrac{1}{3}}{\lg \dfrac{2}{3}}=1$;
$(2)$$($i$)$由$(1)$可知$h\left( x \right)={{\text{e}}^{x}}-{{\text{e}}^{-x}}$,$h\left( x \right)$定义域为$\mathbf{R}$,
$y={{\text{e}}^{x}}$和$y=-{{\text{e}}^{-x}}=-{{\left( \dfrac{1}{\text{e}} \right)}^{x}}$都是$\mathbf{R}$上的单调递增函数,
可知$h\left( x \right)$是定义在$\mathbf{R}$上的单调递增函数,
又$h\left( -x \right)={{\text{e}}^{-x}}-{{\text{e}}^{x}}=-h\left( x \right)$,可知$h\left( x \right)$为奇函数;
$($ⅱ$)$$h\left( x \right)$是定义在$\mathbf{R}$上的单调递增的奇函数可知
$h\left[ \left( {{t}^{2}}-1 \right)x \right]+h\left[ t\left( {{x}^{2}}+2 \right)\sin \left( \theta +\dfrac{5\pi}{4} \right) \right]\leqslant 0$恒成;
即$h\left[ \left( {{t}^{2}}-1 \right)x \right]\leqslant -h\left[ t\left( {{x}^{2}}+2 \right)\sin \left( \theta +\dfrac{5\pi}{4} \right) \right]$恒成立;
即$h\left[ \left( {{t}^{2}}-1 \right)x \right]\leqslant h\left[ t\left( {{x}^{2}}+2 \right)\sin \left( \theta +\dfrac{\pi}{4} \right) \right]$恒成立;
即$\left( {{t}^{2}}-1 \right)x\leqslant t\left( {{x}^{2}}+2 \right)\sin \left( \theta +\dfrac{\pi}{4} \right)$恒成立;
即$\dfrac{{{t}^{2}}-1}{t}\leqslant \left( x+\dfrac{2}{x} \right)\sin \left( \theta +\dfrac{\pi}{4} \right)$恒成立.
又$x+\dfrac{2}{x}\geqslant 2\sqrt{2}$,当且仅当$x=\sqrt{2}$时等号成立.
由$\theta \in \left[ 0,\dfrac{\pi}{2} \right]$可得:$\theta +\dfrac{\pi}{4}\in \left[ \dfrac{\pi}{4},\dfrac{3\pi}{4} \right]$,
$∴$$\sin \left( \theta +\dfrac{\pi}{4} \right)\in \left[ \dfrac{\sqrt{2}}{2},1 \right]$,
$∴\left( x+\dfrac{2}{x} \right)\sin \left( \theta +\dfrac{\pi}{4} \right)\geqslant 2\sqrt{2}\times \dfrac{\sqrt{2}}{2}=2$当且仅当$x=\sqrt{2}$,$\theta =0$或$\dfrac{\pi}{2}$时等号成立,
$∴$$\dfrac{{{t}^{2}}-1}{t}\leqslant \left( x+\dfrac{2}{x} \right)\sin \left( \theta +\dfrac{\pi}{4} \right)$恒成立等价于$\dfrac{{{t}^{2}}-1}{t}\leqslant 2$.
$∴$$\dfrac{{{t}^{2}}-1}{t}\leqslant 2$且$t\gt 0$,
$∴$$\begin{cases} {{t}^{2}}-2t-1\leqslant 0 \\ t\gt 0 \\ \end{cases}$,解得$0\lt t\leqslant 1+\sqrt{2}$.
| 4.4 幂函数题目答案及解析(完整版)