稿件来源:高途
| 1.4.1 用空间向量研究直线、平面的位置关系题目答案及解析如下,仅供参考!
选择性必修一
第一章 空间向量与立体几何
1.4 空间向量的应用
1.4.1 用空间向量研究直线、平面的位置关系
如图,在三棱柱$ABC-A_{1}B_{1}C_{1}$中,$BB_{1}\bot $平面$ABC$,$AB\bot BC$,$AA_{1}=AB=BC=2$.
$(1)$求证:$BC_{1}\bot $平面$A_{1}B_{1}C$;
$(2)$求二面角$B_{1}-A_{1}C-C_{1}$的余弦值:
$(3)$点$M$在线段$B_{1}C$上,且$\dfrac{{B_1}M}{{B_1}C}=\dfrac{1}{3}$,点$N$在线段$A_{1}B$上,若$MN//$平面$A_{1}ACC_{1}$,求$\dfrac{{A}_{1}N}{{A}_{1}B}$的值.
$(1)$证明见解析;
$(2)$$\\dfrac{1}{2}$;
$(3)$$\\dfrac{2}{3}$
"]]$(1)$证明:在三棱柱$ABC-A_{1}B_{1}C_{1}$中,$BB_{1}\bot $平面$ABC$,$AB\bot BC$,
因为平面$ABC//$平面$A_{1}B_{1}C_{1}$,
所以$BB_{1}\bot $平面$A_{1}B_{1}C_{1}$,
又$A_{1}B_{1}\subset $平面$A_{1}B_{1}C_{1}$,$B_{1}C_{1}\subset $平面$A_{1}B_{1}C_{1}$,
所以$BB_{1}\bot A_{1}B_{1}$,且$BB_{1}\bot B_{1}C_{1}$,
又$A_{1}B_{1}\bot B_{1}C_{1}$,
因为$BB_{1}\cap B_{1}C_{1}=B_{1}$,
所以$A_{1}B_{1}\bot $平面$BBC_{1}B_{1}$,
因为$BC_{1}\subset $平面$BBC_{1}B_{1}$,
所以$A_{1}B_{1}\bot BC_{1}$,
由$BB_{1}=AA_{1}=BC$,则侧面$BB_{1}C_{1}C$为正方形,
所以$BC_{1}\bot B_{1}C$,
因为$A_{1}B_{1}\cap B_{1}C=B_{1}$,$A_{1}B_{1}\subset $平面$A_{1}B_{1}C$,$B_{1}C\subset $平面$A_{1}B_{1}C$,
所以$BC_{1}\bot $平面$A_{1}B_{1}C$.
$(2)$以$B$为原点,$BC$为$x$轴,$BA$为$y$轴,$BB_{1}$为$z$轴,建立空间直角坐标系,如图,,
$A\left(0,2,0\right)$,$C\left(2,0,0\right)$,$C_{1}(2,0,2)$,$B\left(0,0,0\right)$,$B_{1}(0,0,2)$,$A_{1}(0,2,2)$,
所以$\overrightarrow{CA}=(-2,2,0)$,$\overrightarrow{C{C}_{1}}=(0,0,2)$,$\overrightarrow{{B}_{1}{A}_{1}}=(0,2,0)$,$\overrightarrow{{B}_{1}C}=(2,0,-2)$,
设平面$ACC_{1}A_{1}$的法向量$\boldsymbol{n}=({x}_{1},{y}_{1},{z}_{1})$,
则$\left\{\begin{array}{l}{\boldsymbol{n}\cdot \overrightarrow{CA}=({x}_{1},{y}_{1},{z}_{1})\cdot (-2,2,0)=-2{x}_{1}+2{y}_{1}=0}\\{\boldsymbol{n}\cdot \overrightarrow{C{C}_{1}}=({x}_{1},{y}_{1},{z}_{1})\cdot (0,0,2)=2{z}_{1}=0}\end{array}\right.$,
取$x_{1}=1$,则$y_{1}=1$,$z_{1}=0$,
所以$\boldsymbol{n}=\left(1,1,0\right)$,
设平面$B_{1}A_{1}C$的法向量$\boldsymbol{m}=({x}_{2},{y}_{2},{z}_{2})$,
则$\left\{\begin{array}{l}{\boldsymbol{m}\cdot \overrightarrow{{B}_{1}C}=({x}_{2},{y}_{2},{z}_{2})\cdot (2,0,-2)=2{x}_{2}-2{z}_{2}=0}\\{\boldsymbol{m}\cdot \overrightarrow{{B}_{1}{A}_{1}}=({x}_{2},{y}_{2},{z}_{2})\cdot (0,2,0)=2{y}_{2}=0}\end{array}\right.$,
取$x_{2}=1$,则$y_{2}=0$,$z=1$,
所以$\boldsymbol{m}=(1,0,1)$,
设二面角$B_{1}-A_{1}C-C_{1}$的平面角为$\theta $,
则$|\cos\theta |=|\cos⟨\boldsymbol{m},\boldsymbol{n}⟩|=\dfrac{|\boldsymbol{m}\cdot \boldsymbol{n}|}{|\boldsymbol{m}||\boldsymbol{n}|}=\dfrac{1}{\sqrt{2}×\sqrt{2}}=\dfrac{1}{2}$,
因为二面角$B_{1}-A_{1}C-C_{1}$为锐二面角,
所以二面角$B_{1}-A_{1}C-C_{1}$的余弦值为$\dfrac{1}{2}$.
$(3)$点$M$在线段$B_{1}C$上,且$\dfrac{{B_1}M}{{B_1}C}=\dfrac{1}{3}$,点$N$在线段$A_{1}B$上,
设$M\left(a,b,c\right)$,$N\left(x,y,z\right)$,
设$\dfrac{{A_1}N}{{A_1}B}=\lambda $,则$\overrightarrow{{B}_{1}C}=3\overrightarrow{{B}_{1}M}$,$\overrightarrow{{A}_{1}N}=\lambda \overrightarrow{{A}_{1}B}$,且$0\leqslant \lambda \leqslant 1$,
且$\overrightarrow{{A}_{1}B}=(0,-2,-2)$,
即$\left(2,0,-2\right)=3\left(a,b,c-2\right)$,$\left(x,y-2,z-2\right)=\lambda \left(0,-2,-2\right)$,
解得$M\left( \dfrac{2}{3},0,\dfrac{4}{3}\right)$,$N\left(0,2-2\lambda ,2-2\lambda \right)$,
$\overrightarrow{MN}=\left( -\dfrac{2}{3},2-2\lambda,\dfrac{2}{3}-2\lambda\right)$,
因为$MN$∥平面$ACC_{1}A_{1}$,且$\boldsymbol{n}=(1,1,0)$,
所以$\boldsymbol{n}\cdot \overrightarrow{MN}=-\dfrac{2}{3}+2-2\lambda =0$,解得$\lambda =\dfrac{2}{3}$.
所以$\dfrac{{A}_{1}N}{{A}_{1}B}$的值为$\dfrac{2}{3}$.
| 1.4.1 用空间向量研究直线、平面的位置关系题目答案及解析(完整版)