稿件来源:高途
| 1.4.1 用空间向量研究直线、平面的位置关系题目答案及解析如下,仅供参考!
选择性必修一
第一章 空间向量与立体几何
1.4 空间向量的应用
1.4.1 用空间向量研究直线、平面的位置关系
在如图$1$所示的图形中,四边形$ABCD$为菱形,$\angle BAD=60^\circ$,$\triangle $$PAD$和$\triangle $$BCQ$均为直角三角形,$\angle PDA=\angle QCB=90^\circ$,$PD=AD=2CQ=2$,现沿$AD$,$BC$将$\triangle $$PAD$和$\triangle $$BCQ$进行翻折,使$PD//QC$($PD$,$QC$在平面$ABCD$同侧),如图$2$.
$(1)$当二面角$P-AD-B$为$90^\circ$时,判断$DQ$与平面$PAB$是否平行;
$(2)$探究当二面角$P-AD-B$为$120^\circ$时,平面$PBQ$与平面$PBD$是否垂直;
$(3)$在$(2)$的条件下,求平面$PBD$与平面$QBC$夹角的余弦值.
$(1)$$DQ$不与平面$PAB$平行;
$(2)$平面$PBQ$不与平面$PBD$垂直;
$(3)$$\\dfrac{2\\sqrt{13}}{13}$
"]]$(1)$若二面角$P-AD-B$为$90^\circ$,则平面$PAD\perp$平面$ABCD$,
$\because $ 平面$PAD\cap$平面$ABCD=AD$,且$PD\perp AD$,
$\therefore PD\perp$平面$ABCD$,
如图,以$D$为坐标原点,$\overrightarrow{DA}$,$\overrightarrow{DP}$的方向分别为$x$,$z$轴的正方向,建立空间直角坐标系,
则$P(0,0,2)$,$D(0,0,0)$,$B(1,\sqrt{3},0)$,$Q(-1,\sqrt{3},1)$,$A(2,0,0)$,
设平面$PAB$的法向量为$\boldsymbol{n}=(x,y,z)$,
$\because \overrightarrow{BP}=(-1,-\sqrt{3},2)$,$\overrightarrow{BA}=(1,-\sqrt{3},0)$,
$\therefore \left\{\begin{array}{l}\boldsymbol{n}\cdot \overrightarrow{BP}=-x-\sqrt{3}y+2z=0\\ \boldsymbol{n}\cdot \overrightarrow{BA}=x-\sqrt{3}y=0\end{array}\right.$
令$x=3$,得$\boldsymbol{n}=(3,\sqrt{3},3)$,
$\because \overrightarrow{DQ}=(-1,\sqrt{3},1)$,
$\therefore\overrightarrow{DQ}\cdot\boldsymbol{n}=-1\times3+\sqrt{3}\times\sqrt{3}+1\times3\ne0$,
$\therefore DQ$不与平面$PAB$平行.
$(2)$取$BC$的中点$E$,连接$DE$,则$DE\perp AD$,
$\because AD\perp PD$,
$\therefore $ 二面角$P-AD-B$的平面角为$\angle PDE$,即$\angle PDE=120^\circ$,
如图,以$D$为坐标原点,$\overrightarrow{DA}$,$\overrightarrow{DE}$的方向分别为$x$,$y$轴的正方向,建立空间直角坐标系,
则$P(0,-1,\sqrt{3})$,$D(0,0,0)$,$B(1,\sqrt{3},0)$,$Q\left(-1,\sqrt{3}-\dfrac{1}{2},\dfrac{\sqrt{3}}{2}\right)$,
设平面$PBD$的法向量为$\boldsymbol{m}=(x_{1},y_{1},z_{1})$,
$\because \overrightarrow{DB}=(1,\sqrt{3},0)$,$\overrightarrow{DP}=(0,-1,\sqrt{3})$,
$\therefore \left\{\begin{array}{l}\boldsymbol{m}\cdot \overrightarrow{DB}={x}_{1}+\sqrt{3}{y}_{1}=0,\\ \boldsymbol{m}\cdot \overrightarrow{DP}=-{y}_{1}+\sqrt{3}{z}_{1}=0,\end{array}\right.$令$z_{1}=1$,得$\boldsymbol{m}=(-3,\sqrt{3},1)$,
设平面$PBQ$的法向量为$\boldsymbol{n}=(x_{2},y_{2},z_{2})$,
$\because \overrightarrow{BP}=(-1,-\sqrt{3}-1,\sqrt{3})$,$\overrightarrow{BQ}=\left(-2,-\dfrac{1}{2},\dfrac{\sqrt{3}}{2}\right)$,
则$\begin{cases}{\boldsymbol{n}\perp \overrightarrow{BP}}\\ {\boldsymbol{n}\perp \overrightarrow{BQ}}\end{cases}$,
$\therefore \left\{\begin{array}{l}\boldsymbol{n}\cdot \overrightarrow{BP}=-{x}_{2}-(\sqrt{3}+1){y}_{2}+\sqrt{3}{z}_{2}=0\\ \boldsymbol{n}\cdot \overrightarrow{BQ}=-2{x}_{2}-\dfrac{1}{2}{y}_{2}+\dfrac{\sqrt{3}}{2}{z}_{2}=0,\end{array}\right.$
令${x}_{2}=\sqrt{3}$,得$\boldsymbol{n}=(\sqrt{3},3,4+\sqrt{3})$,
$\because\boldsymbol{m}\cdot\boldsymbol{n}=4+\sqrt{3}\ne0$,
$\therefore \boldsymbol{m}$,$\boldsymbol{n}$不垂直,
$\therefore $ 平面$PBQ$不与平面$PBD$垂直.
$(3)$在$(2)$中的坐标系中,设平面$QBC$的法向量为$\boldsymbol{p}=(x,y,z)$,
$\because \overrightarrow{BC}=(-2,0,0)$,$\overrightarrow{BQ}=\left(-2,-\dfrac{1}{2},\dfrac{\sqrt{3}}{2}\right)$,
则$\begin{cases}{\boldsymbol{p}\perp \overrightarrow{BC}}\\ {\boldsymbol{p}\perp \overrightarrow{BQ}}\end{cases}$,
$\therefore \left\{\begin{array}{l}\boldsymbol{p}\cdot \overrightarrow{BC}=-2x=0,\\ \boldsymbol{p}\cdot \overrightarrow{BQ}=-2x-\dfrac{1}{2}y+\dfrac{\sqrt{3}}{2}z=0,\end{array}\right.$
令$z=1$,得$\boldsymbol{p}=(0,\sqrt{3},1)$,
设平面$PBD$与平面$QBC$的夹角为$\theta$,
则$\cos\theta=|\cos\langle\boldsymbol{m},\boldsymbol{p}\rangle|=\dfrac{|\boldsymbol{m}\cdot\boldsymbol{p}|}{|\boldsymbol{m}||\boldsymbol{p}|}=\dfrac{4}{2\sqrt{13}}=\dfrac{2\sqrt{13}}{13}$,
$\therefore $ 平面$PBD$与平面$QBC$夹角的余弦值为$\dfrac{2\sqrt{13}}{13}$.
| 1.4.1 用空间向量研究直线、平面的位置关系题目答案及解析(完整版)