稿件来源:高途
| 4.2.2 离散型随机变量的分布列题目答案及解析如下,仅供参考!
选择性必修二
第四章 概率与统计
4.2 随机变量
4.2.2 离散型随机变量的分布列
一口袋中装有$10$个小球,其中标有数字$1$,$2$,$3$,$4$,$5$的小球各两个,这些小球除数字外其余均相同.
$(1)$某人从中一次性摸出$4$个球,设事件$A$“摸出的$4$个球中至少有一个数字是$5$”,事件$B$“摸出的$4$个球中恰有两个数字相同”;分别求事件$A$和事件$B$的概率;
$(2)$现有一游戏,游戏规则是:游戏玩家每次有放回地从袋中随机摸出一球,若摸到$5$号球,则游戏结束;否则继续摸球,当摸到第$n\left(n\geqslant 2\right)$个球时,无论摸出的是几号球游戏都结束.设$X$表示摸球的次数$\left(1\leqslant X\leqslant n,X\in {\bf N}^{*}\right)$,求随机变量$X$的期望.
$(1)$ $P(A)=\\dfrac{2}{3},P(B)=\\dfrac{4}{7}$
$(2)$ $E(X)=5-4×{(\\dfrac{4}{5})}^{n-1}$
$(1)$从中一次性提出$4$个球有${\rm C}_{10}^{4}=210$种方法,
$n(A)=210-{\rm C}_{8}^{4}=140,n(B)={\rm C}_{5}^{1}\cdot {\rm C}_{4}^{2}\cdot {\rm C}_{2}^{1}\cdot {\rm C}_{2}^{1}=120$,
所以$P(A)=\dfrac{140}{210}=\dfrac{2}{3},P(B)=\dfrac{120}{210}=\dfrac{4}{7}$;
$(2)X$的取值可能为$1$,$2$,$3$,$\cdots $,$n$,
当$1\leqslant k\leqslant n-1$时,$P\left(X=k\right)={(\dfrac{4}{5})}^{k-1}\cdot \dfrac{1}{5}$,
当$k=n$时,$P\left(X=k\right)={(\dfrac{4}{5})}^{n-1}$,
$X$ | $1$ | $2$ | $3$ | ... | $K$ | ... | $n$ |
$P$ | ${(\dfrac{4}{5})}^{0}\cdot\dfrac{1}{5}$ | ${(\dfrac{4}{5})}^{1}\cdot\dfrac{1}{5}$ | ${(\dfrac{4}{5})}^{2}\cdot\dfrac{1}{5}$ | ... | ${(\dfrac{4}{5})}^{k-1}\cdot\dfrac{1}{5}$ | ... | ${(\dfrac{4}{5})}^{n-1}$ |
所以$E(X)=1×{(\dfrac{4}{5})}^{0}\cdot \dfrac{1}{5}+2×{(\dfrac{4}{5})}^{1}\cdot \dfrac{1}{5}+3×{(\dfrac{4}{5})}^{2}\cdot \dfrac{1}{5}+⋯+\left(n-1\right)×{(\dfrac{4}{5})}^{n-2}\cdot \dfrac{1}{5}+n×{(\dfrac{4}{5})}^{n-1}$,
$=\dfrac{1}{5}[{(\dfrac{4}{5})}^{0}+2×{(\dfrac{4}{5})}^{1}+3×{(\dfrac{4}{5})}^{2}+⋯+\left(n-1\right)×{(\dfrac{4}{5})}^{n-2}]+n×{(\dfrac{4}{5})}^{n-1}$,
令$S={(\dfrac{4}{5})}^{0}+2×{(\dfrac{4}{5})}^{1}+3×{(\dfrac{4}{5})}^{2}+⋯+\left(n-1\right)×{(\dfrac{4}{5})}^{n-2}$,
则$\dfrac{4}{5}S={(\dfrac{4}{5})}^{1}+2×{(\dfrac{4}{5})}^{2}+⋯+\left(n-2\right)×{(\dfrac{4}{5})}^{n-2}+\left(n-1\right)×{(\dfrac{4}{5})}^{n-1}$,
相减得$\dfrac{1}{5}S={(\dfrac{4}{5})}^{0}+{(\dfrac{4}{5})}^{1}+{(\dfrac{4}{5})}^{2}+⋯+{(\dfrac{4}{5})}^{n-2}-\left(n-1\right)×{(\dfrac{4}{5})}^{n-1}=\dfrac{1-{(\dfrac{4}{5})}^{n-1}}{1-\dfrac{4}{5}}-\left(n-1\right)×{(\dfrac{4}{5})}^{n-1}$,
$=5-\left(n+4\right)×{(\dfrac{4}{5})}^{n-1}$,
所以$E(X)=5-4×{(\dfrac{4}{5})}^{n-1}$.
| 4.2.2 离散型随机变量的分布列题目答案及解析(完整版)