| 6.5.1 直线与平面垂直 题目答案及解析

稿件来源:高途

| 6.5.1 直线与平面垂直题目答案及解析如下,仅供参考!

必修二

第六章 立体几何初步

6.5 垂直关系

6.5.1 直线与平面垂直

如图,在四棱锥${{P}-{ABCD}}$中,平面$P A B \perp$平面$ABCD$$AD\perp CD$$AD\text{//}BC$$PA=AD=CD=1$$BC=2$$PB=\sqrt{3}$$E$${ {PD}}$的中点,点$F$$PC$上,且$\dfrac{PF}{FC}=\dfrac{1}{2}$

$(1)$求证:$PA\perp $平面$ABCD$

$(2)$在棱$BP$上是否存在点$G$,使得点$G$到平面$AEF$的距离为$\dfrac{\sqrt{3}}{9}$,若存在求出点$G$的位置,不存在请说明理由.

[["

$(1)$证明见解析;$(2)$靠近$B$的三等分点

"]]

$(1)$$BC$的中点$S$,连结$AS$,则四边形$ASCD$是正方形,

  

$AS=BS=1$$AS\perp BS$

$\therefore AB=\sqrt{2}$,且$PA=1$$PB=\sqrt{3}$

$\therefore P{{A}^{2}}+A{{B}^{2}}=P{{B}^{2}}$,

$\therefore PA\perp AB$

$\because $ 平面$P A B \perp$平面$ABCD$,平面$P A B \cap$平面$A B C D=A B$$PA$在面$PAB$内,

$\therefore PA\perp $平面$ABCD$

$(2)$$BC$上取点$M$,使$CM=\dfrac{3}{2}$,连结$PM$,在$PM$上取点$H$,使$\dfrac{MH}{MP}=\dfrac{1}{3}$

$PC$上取点$N$,使$\dfrac{CN}{CP}=\dfrac{1}{3}$,连结$HN$,则$HN//BC$,且$\dfrac{HN}{MC}=\dfrac{2}{3}$,则$HN=1$

$HN//BC//AD$,且$HN=AD$

则四边形$AHND$是平行四边形,

$\therefore AH//ND$,且$\dfrac{AF}{FN}=\dfrac{AE}{ED}$,即$EF//ND$

$EF//AH$

$\therefore $ 四点$A$$E$$F$$H$四点共面,连结$BH$

$\overrightarrow{PH}=\dfrac{2}{3}\overrightarrow{PM}=\dfrac{2}{3}\left( \overrightarrow{PB}+\overrightarrow{BM} \right)=\dfrac{2}{3}\left( \overrightarrow{PB}+\dfrac{1}{4}\overrightarrow{BC} \right)$

$=\dfrac{2}{3}\left[ \overrightarrow{PB}+\dfrac{1}{4}\left( \overrightarrow{PC}-\overrightarrow{PB} \right) \right]=\dfrac{1}{2}\overrightarrow{PB}+\dfrac{1}{6}\overrightarrow{PC}$

$=\dfrac{1}{2}\overrightarrow{PB}+\dfrac{1}{2}\overrightarrow{PF}$

$\because \dfrac{1}{2}+\dfrac{1}{2}=1$

$\therefore $$H$$B$$F$三点共线,

$\therefore A$$E$$F$$H$$B$五点共面,即$BP$与平面$AEF$交于点$B$

$(1)$可知,$PA\perp $平面$ABCD$$CD\subset $平面$ABCD$

$\therefore PA\perp CD$,且$AD\perp DC$$PA\cap AD=A$,且$PA,AD\subset $平面$PAD$

$\therefore CD\perp $平面$PAD$$AE\subset $平面$PAD$

$\therefore CD\perp AE$

$\triangle PAD$是等腰直角三角形,点$E$${ {PD}}$的中点,

$\therefore AE\perp PD$,且$CD\cap PD=D$$PD$$CD\subset $平面$PCD$

$\therefore AE\perp $平面$PCD$

${{S}_{\triangle DEF}}=\dfrac{1}{6}{{S}_{\triangle PCD}}=\dfrac{1}{6}\times \dfrac{1}{2}\times PD\times CD=\dfrac{\sqrt{2}}{12}$

$\therefore {{V}_{A-DEF}}=\dfrac{1}{3}\times {{S}_{\triangle DEF}}\times AE=\dfrac{1}{3}\times \dfrac{\sqrt{2}}{12}\times \dfrac{\sqrt{2}}{2}=\dfrac{1}{36}$

$PE=\dfrac{\sqrt{2}}{2}$$PF=\dfrac{1}{3}PC=\dfrac{\sqrt{3}}{3}$$\cos \angle DPC=\dfrac{\sqrt{2}}{\sqrt{3}}=\dfrac{\sqrt{6}}{3}$

$\therefore E{{F}^{2}}=P{{E}^{2}}+P{{F}^{2}}-2PE\cdot PF\cdot \cos \angle DPC=\dfrac{1}{6}$,即$EF=\dfrac{\sqrt{6}}{6}$

$\because AE\perp EF$

$\therefore {{S}_{\triangle AEF}}=\dfrac{1}{2}\times AE\times EF=\dfrac{1}{2}\times \dfrac{\sqrt{2}}{2}\times \dfrac{\sqrt{6}}{6}=\dfrac{\sqrt{3}}{12}$

设点$D$到平面$AEF$的距离为$h$,则${{V}_{D-AEF}}={{V}_{A-DEF}}$

$\dfrac{1}{3}\times \dfrac{\sqrt{3}}{12}\times h=\dfrac{1}{36}$

$\therefore h=\dfrac{\sqrt{3}}{3}$

$\because $$E$${ {PD}}$的中点,

$\therefore $$P$到平面$AEF$的距离也是$\dfrac{\sqrt{3}}{3}$

若点$G$到平面$AEF$的距离为$\dfrac{\sqrt{3}}{9}$,则$\dfrac{\dfrac{\sqrt{3}}{9}}{\dfrac{\sqrt{3}}{3}}=\dfrac{BG}{BP}=\dfrac{1}{3}$

$\therefore $ 存在点$G$,使得点$G$到平面$AEF$的距离为$\dfrac{\sqrt{3}}{9}$,点$G$为靠近点$B$的三等分点.

| 6.5.1 直线与平面垂直题目答案及解析(完整版)

去刷题
今日推荐