稿件来源:高途
| 6.5.1 直线与平面垂直题目答案及解析如下,仅供参考!
必修二
第六章 立体几何初步
6.5 垂直关系
6.5.1 直线与平面垂直
如图,在四棱锥${{P}-{ABCD}}$中,底面$ABCD$是矩形,$AB=2AD=2$,$PA\perp $平面$ABCD$,$E$为$PD$中点$.$
$(1)$若$PA=1$$.$
$(i)$求证:$AE\perp $平面$PCD$;
$(ii)$求直线$BE$与平面$PCD$所成角的正弦值;
$(2)$若平面$BCE$与平面$CED$夹角的正弦值为$\dfrac{\sqrt{21}}{5}$,求$PA.$
$(1)(i)$证明见解析;$(ii)$$\\dfrac{1}{3}$
$(2)2$
"]]$(1)(i)$方法一
$∵$$PA\perp $平面$ABCD$,$CD\subset $平面$ABCD$,$∴$$PA\perp CD$,
$∵$四边形$ABCD$为矩形,$∴$$CD\perp AD$,又$PA\cap AD=A$,$PA$,$A D \subset$平面$PAD$,$∴$$CD\perp $面$PAD$,
$∵$$AE\subset $面$PAD$,$∴$$CD\perp AE$,
在$\triangle PAD$中,$PA=AD=1$,$E$为$PD$中点,$∴$$AE\perp PD$
$∵$$PD\cap CD=D$,$P D \subset$面$PCD$,$CD\subset $面$PCD$,$∴$$AE\perp $平面$PC$ $D$.
方法二:以$A$为原点,$AB$,$AD$,$AP$所在直线分别为$x$轴,$y$轴,$z$轴,建立如图所示的空间直角坐标系,
则$A(0,0,0)$,$B(2,0,0)$,$C(2,1,0)$,$D(0,1,0)$,$P(0,0,1)$,$E\left( 0,\dfrac{1}{2},\dfrac{1}{2} \right)$,
$\overrightarrow{AE}=\left( 0,\dfrac{1}{2},\dfrac{1}{2} \right)$,$\overrightarrow{PC}=(2,1,-1)$,$\because \overrightarrow{AE}\cdot \overrightarrow{PC}=0+\dfrac{1}{2}-\dfrac{1}{2}=0$,$∴$$AE\perp PC$$.$
在$\triangle PAD$中,$PA=AD=1$,$E$为$PD$中点,$∴$$AE\perp PD$$.$
$∵$$PD\cap PC=E$,$P D \subset$面$PCD$,$PC\subset $面$PC$ $D.∴$$AE\perp $平面$PCD$;
方法三:设平面$PCD$的一个法向量为$\boldsymbol{t}=(a,b,c)$,$\overrightarrow{DC}=(1,0,0)$,$\overrightarrow{PD}=(0,1,-1)$,$\overrightarrow{AE}=\left( 0,\dfrac{1}{2},\dfrac{1}{2} \right)$,
则$\begin{cases} \boldsymbol{t}\cdot \overrightarrow{DC}=0 \\ \boldsymbol{t}\cdot \overrightarrow{PD}=0 \\ \end{cases}$,$∴$$\begin{cases} a=0 \\ b-c=0 \\ \end{cases}$$.$
令$b=1$,则$c=1$,$∴$$\boldsymbol{t}=(0,1,1)$,
$\because \overrightarrow{A E}=\dfrac{1}{2} \boldsymbol{t}, \therefore \overrightarrow{A E} \| \boldsymbol{t} \quad \therefore A E \perp$,$∴$$\overrightarrow{AE}//\boldsymbol{t}$,$∴$$AE\perp $平面$PC$ $D$.
$(ii)$由$(i)$得:$AE\perp $平面$PCD$,$PC\subset $平面$PCD$,
$\therefore AE\perp PC$,
在$\triangle PAD$中,$PA=AD=1$,$E$为$PD$中点,
$∴$$AE\perp PD$,$∵$$PD\cap PC=E$,$P D \subset$面$PCD$,$PC\subset $面$PC$ $D$.
$∴$$AE\perp $平面$PCD$,$∴$$\overrightarrow{AE}$为平面$PCD$的一个法向量$\overrightarrow{AE}=\left( 0,\dfrac{1}{2},\dfrac{1}{2} \right)$,$\overrightarrow{B E}=\left(-2, \dfrac{1}{2}, \dfrac{1}{2}\right)$$.$
记直线$BE$与平面$PCD$所成角为$\beta $,
$∴$$\sin \beta =|\cos \langle\overrightarrow{BE}\cdot \overrightarrow{AE}\rangle |=\dfrac{|\overrightarrow{AE}\cdot \overrightarrow{BE}|}{|\overrightarrow{AE}|\cdot |\overrightarrow{BE}|}=\dfrac{\left| \dfrac{1}{4}+\dfrac{1}{4} \right|}{\sqrt{\dfrac{1}{4}+\dfrac{1}{4}}\cdot \sqrt{4+\dfrac{1}{4}+\dfrac{1}{4}}}=\dfrac{1}{3}$,
$∴$直线$BE$与平面$PCD$所成角的正弦值为$\dfrac{1}{3}$;
$(2)$设$PA=a(a\gt 0)$,$∴$$\overrightarrow{BC}=(0,1,0)$,$\overrightarrow{AE}=\left( 0,\dfrac{1}{2},\dfrac{a}{2} \right)$,$P A=a(a\gt 0), \therefore \overrightarrow{B C}=(0,1,0), \overrightarrow{A E}=\left(0, \dfrac{1}{2}, \dfrac{a}{2}\right), \overrightarrow{B E}=\left(-2, \dfrac{1}{2}, \dfrac{a}{2}\right)$
设平面$BCE$的一个法向量为$\boldsymbol{n}=(x,y,z)$,
则$\begin{cases} \boldsymbol{n}\cdot \overrightarrow{BC}=0 \\ \boldsymbol{n}\cdot \overrightarrow{BE}=0 \\ \end{cases}$,$∴$$\begin{cases} y=0 \\ -2x+\dfrac{1}{2}y+\dfrac{a}{2}z=0 \\ \end{cases}$,
令$z=2$,解得$\begin{cases} x=\dfrac{a}{2} \\ y=0 \\ \end{cases}$,$∴$$\boldsymbol{n}=\left( \dfrac{a}{2},0,2 \right)$,
设平面$CPD$的法向量$\boldsymbol{m}=\left( {{x}_{0}},{{y}_{0}},{{z}_{0}} \right)$,又$\overrightarrow{CP}=(-2,-1,a)$,$\overrightarrow{C P}=(-2,-1, a), \overrightarrow{C D}=\overrightarrow{B A}=(-2,0,0)$ ,
则 $\begin{cases} \boldsymbol{m}\cdot \overrightarrow{CP}=0 \\ \boldsymbol{m}\cdot \overrightarrow{CD}=0 \\ \end{cases}$,$∴$$\begin{cases} -2{{x}_{0}}=0 \\ -2{{x}_{0}}-{{y}_{0}}+a{{z}_{0}}=0 \\ \end{cases}$,
令${{z}_{0}}=1$,解得 $\begin{cases} {{x}_{0}}=0 \\ {{y}_{0}}=a \\ \end{cases}$,$∴$$\boldsymbol{m}=(0,a,1)$,
设平面$BCE$与平面$CED$的夹角大小为$\theta $,
则$\cos \theta =|\cos \langle \boldsymbol{n},\boldsymbol{m}\rangle |=\left| \dfrac{\boldsymbol{n}\cdot \boldsymbol{m}}{|\boldsymbol{n}|\cdot |\boldsymbol{m}|} \right|=\dfrac{2}{\sqrt{\dfrac{{{a}^{2}}}{4}+4}\cdot \sqrt{{{a}^{2}}+1}}=\dfrac{4}{\sqrt{\left( {{a}^{2}}+16 \right)\left( {{a}^{2}}+1 \right)}}$$.$
$\because \sin \theta =\dfrac{\sqrt{21}}{5}$,
$\therefore \cos \theta =\dfrac{2}{5}$,
即$\dfrac{4}{\sqrt{\left( {{a}^{2}}+16 \right)\left( {{a}^{2}}+1 \right)}}=\dfrac{2}{5}$,$\dfrac{4}{\sqrt{\left(a^2+16\right)\left(a^2+1\right)}}=\dfrac{2}{5}, \quad\left(a^2-4\right)\left(a^2+21\right)=0$
解得$a=2$,即$PA=2$$.$
| 6.5.1 直线与平面垂直题目答案及解析(完整版)