| 6.5.1 直线与平面垂直 题目答案及解析

稿件来源:高途

| 6.5.1 直线与平面垂直题目答案及解析如下,仅供参考!

必修二

第六章 立体几何初步

6.5 垂直关系

6.5.1 直线与平面垂直

如图,在四棱锥${{P}-{ABCD}}$中,底面$ABCD$是矩形,$AB=2AD=2$$PA\perp $平面$ABCD$$E$$PD$中点$.$

$(1)$$PA=1$$.$

$(i)$求证:$AE\perp $平面$PCD$

$(ii)$求直线$BE$与平面$PCD$所成角的正弦值;

$(2)$若平面$BCE$与平面$CED$夹角的正弦值为$\dfrac{\sqrt{21}}{5}$,求$PA.$

[["

$(1)(i)$证明见解析;$(ii)$$\\dfrac{1}{3}$

$(2)2$

"]]

$(1)(i)$方法一

$∵$$PA\perp $平面$ABCD$$CD\subset $平面$ABCD$$∴$$PA\perp CD$

$∵$四边形$ABCD$为矩形,$∴$$CD\perp AD$,又$PA\cap AD=A$$PA$$A D \subset$平面$PAD$$∴$$CD\perp $$PAD$

$∵$$AE\subset $$PAD$$∴$$CD\perp AE$

$\triangle PAD$中,$PA=AD=1$$E$$PD$中点,$∴$$AE\perp PD$

$∵$$PD\cap CD=D$$P D \subset$$PCD$$CD\subset $$PCD$$∴$$AE\perp $平面$PC$  $D$.

方法二:以$A$为原点,$AB$$AD$$AP$所在直线分别为$x$轴,$y$轴,$z$轴,建立如图所示的空间直角坐标系,

$A(0,0,0)$$B(2,0,0)$$C(2,1,0)$$D(0,1,0)$$P(0,0,1)$$E\left( 0,\dfrac{1}{2},\dfrac{1}{2} \right)$

$\overrightarrow{AE}=\left( 0,\dfrac{1}{2},\dfrac{1}{2} \right)$$\overrightarrow{PC}=(2,1,-1)$$\because \overrightarrow{AE}\cdot \overrightarrow{PC}=0+\dfrac{1}{2}-\dfrac{1}{2}=0$$∴$$AE\perp PC$$.$

$\triangle PAD$中,$PA=AD=1$$E$$PD$中点,$∴$$AE\perp PD$$.$

$∵$$PD\cap PC=E$$P D \subset$$PCD$$PC\subset $$PC$  $D.∴$$AE\perp $平面$PCD$

方法三:设平面$PCD$的一个法向量为$\boldsymbol{t}=(a,b,c)$$\overrightarrow{DC}=(1,0,0)$$\overrightarrow{PD}=(0,1,-1)$$\overrightarrow{AE}=\left( 0,\dfrac{1}{2},\dfrac{1}{2} \right)$

$\begin{cases} \boldsymbol{t}\cdot \overrightarrow{DC}=0 \\ \boldsymbol{t}\cdot \overrightarrow{PD}=0 \\ \end{cases}$$∴$$\begin{cases} a=0 \\ b-c=0 \\ \end{cases}$$.$

$b=1$,则$c=1$$∴$$\boldsymbol{t}=(0,1,1)$

$\because \overrightarrow{A E}=\dfrac{1}{2} \boldsymbol{t}, \therefore \overrightarrow{A E} \| \boldsymbol{t} \quad \therefore A E \perp$$∴$$\overrightarrow{AE}//\boldsymbol{t}$$∴$$AE\perp $平面$PC$  $D$.

$(ii)$$(i)$得:$AE\perp $平面$PCD$,$PC\subset $平面$PCD$,

$\therefore AE\perp PC$

$\triangle PAD$中,$PA=AD=1$$E$$PD$中点,

$∴$$AE\perp PD$$∵$$PD\cap PC=E$$P D \subset$$PCD$$PC\subset $$PC$  $D$.

$∴$$AE\perp $平面$PCD$$∴$$\overrightarrow{AE}$为平面$PCD$的一个法向量$\overrightarrow{AE}=\left( 0,\dfrac{1}{2},\dfrac{1}{2} \right)$$\overrightarrow{B E}=\left(-2, \dfrac{1}{2}, \dfrac{1}{2}\right)$$.$

记直线$BE$与平面$PCD$所成角为$\beta $

$∴$$\sin \beta =|\cos \langle\overrightarrow{BE}\cdot \overrightarrow{AE}\rangle |=\dfrac{|\overrightarrow{AE}\cdot \overrightarrow{BE}|}{|\overrightarrow{AE}|\cdot |\overrightarrow{BE}|}=\dfrac{\left| \dfrac{1}{4}+\dfrac{1}{4} \right|}{\sqrt{\dfrac{1}{4}+\dfrac{1}{4}}\cdot \sqrt{4+\dfrac{1}{4}+\dfrac{1}{4}}}=\dfrac{1}{3}$

$∴$直线$BE$与平面$PCD$所成角的正弦值为$\dfrac{1}{3}$

$(2)$$PA=a(a\gt 0)$$∴$$\overrightarrow{BC}=(0,1,0)$$\overrightarrow{AE}=\left( 0,\dfrac{1}{2},\dfrac{a}{2} \right)$$P A=a(a\gt 0), \therefore \overrightarrow{B C}=(0,1,0), \overrightarrow{A E}=\left(0, \dfrac{1}{2}, \dfrac{a}{2}\right), \overrightarrow{B E}=\left(-2, \dfrac{1}{2}, \dfrac{a}{2}\right)$

设平面$BCE$的一个法向量为$\boldsymbol{n}=(x,y,z)$

$\begin{cases} \boldsymbol{n}\cdot \overrightarrow{BC}=0 \\ \boldsymbol{n}\cdot \overrightarrow{BE}=0 \\ \end{cases}$$∴$$\begin{cases} y=0 \\ -2x+\dfrac{1}{2}y+\dfrac{a}{2}z=0 \\ \end{cases}$

$z=2$,解得$\begin{cases} x=\dfrac{a}{2} \\ y=0 \\ \end{cases}$$∴$$\boldsymbol{n}=\left( \dfrac{a}{2},0,2 \right)$

设平面$CPD$的法向量$\boldsymbol{m}=\left( {{x}_{0}},{{y}_{0}},{{z}_{0}} \right)$,又$\overrightarrow{CP}=(-2,-1,a)$$\overrightarrow{C P}=(-2,-1, a), \overrightarrow{C D}=\overrightarrow{B A}=(-2,0,0)$

$\begin{cases} \boldsymbol{m}\cdot \overrightarrow{CP}=0 \\ \boldsymbol{m}\cdot \overrightarrow{CD}=0 \\ \end{cases}$$∴$$\begin{cases} -2{{x}_{0}}=0 \\ -2{{x}_{0}}-{{y}_{0}}+a{{z}_{0}}=0 \\ \end{cases}$

${{z}_{0}}=1$,解得 $\begin{cases} {{x}_{0}}=0 \\ {{y}_{0}}=a \\ \end{cases}$$∴$$\boldsymbol{m}=(0,a,1)$

设平面$BCE$与平面$CED$的夹角大小为$\theta $

$\cos \theta =|\cos \langle \boldsymbol{n},\boldsymbol{m}\rangle |=\left| \dfrac{\boldsymbol{n}\cdot \boldsymbol{m}}{|\boldsymbol{n}|\cdot |\boldsymbol{m}|} \right|=\dfrac{2}{\sqrt{\dfrac{{{a}^{2}}}{4}+4}\cdot \sqrt{{{a}^{2}}+1}}=\dfrac{4}{\sqrt{\left( {{a}^{2}}+16 \right)\left( {{a}^{2}}+1 \right)}}$$.$

$\because \sin \theta =\dfrac{\sqrt{21}}{5}$

$\therefore \cos \theta =\dfrac{2}{5}$

$\dfrac{4}{\sqrt{\left( {{a}^{2}}+16 \right)\left( {{a}^{2}}+1 \right)}}=\dfrac{2}{5}$$\dfrac{4}{\sqrt{\left(a^2+16\right)\left(a^2+1\right)}}=\dfrac{2}{5}, \quad\left(a^2-4\right)\left(a^2+21\right)=0$

解得$a=2$,即$PA=2$$.$

| 6.5.1 直线与平面垂直题目答案及解析(完整版)

去刷题
今日推荐