稿件来源:高途
| 6.5.1 直线与平面垂直题目答案及解析如下,仅供参考!
必修二
第六章 立体几何初步
6.5 垂直关系
6.5.1 直线与平面垂直
如图,在四棱锥${{P}-{ABCD}}$中,平面$ABCD\perp $平面$PAD$,$AD//BC$,$AB=BC=PA=1$,$AD=2$,$\angle ADP=30{}^\circ $,$\angle BAD=90{}^\circ $,$E$是$PD$的中点.
$(1)$求证:$PD\perp PB$;
$(2)$若点$M$在线段$PC$上,异面直线$BM$和$CE$所成角的余弦值为$\dfrac{\sqrt{10}}{5}$,求面$MAB$与面$PCD$夹角的余弦值.
$(1)$证明见解析;
$(2)$$\\dfrac{2\\sqrt{105}}{35}$
"]]$(1)$在$\triangle PAD$中,
$∵$$PA=1$,$AD=2$,$\angle ADP=30{}^\circ $,
由余弦定理可得:$P{{A}^{2}}=A{{D}^{2}}+P{{D}^{2}}-2AD\cdot PD\cdot \cos \angle ADP$,
即$1=4+P{{D}^{2}}-4PD\cdot \cos {{30}^{\text{o}}}\Rightarrow PD=\sqrt{3}$,
$∴$ $A{{D}^{2}}=P{{A}^{2}}+P{{D}^{2}}$,
从而$PD\perp PA$
$∵$$\angle BAD=90{}^\circ $,
$∴$$AB\perp AD$
$∵$ 平面$ABCD\perp $平面$PAD$,平面$ABCD$$\text{}$平面$PAD$$=AD$,$AB$$\subset $平面$ABC$ $D$.
$∴$ $AB\perp $平面$PAD$,
$∴$ $P D \subset$平面$PAD$,
$∴$ $PD\perp AB$$.$
$∵$ $AB\cap PA=A$,$AB$$\subset $平面$PAB$,$PA$$\subset $平面$PAB$,
$∴$ $PD\perp $平面$PA$ $B$.
$∵$ $PB\subset $平面$PAB$,
$∴$ $PD\perp PB$.
$(2)$以$A$为原点,以$AD$为$y$轴,建系如图所示,
则$B\left( 0,0,1 \right)$,$P\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2},0 \right)$,$C\left( 0,1,1 \right),D\left( 0,2,0 \right)$,$E\left( \dfrac{\sqrt{3}}{4},\dfrac{5}{4},0 \right)$,
则$\overrightarrow{CE}=\left( \dfrac{\sqrt{3}}{4},\dfrac{1}{4},-1 \right)$,$\overrightarrow{BP}=\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2},-1 \right)$,$\overrightarrow{PC}=\left( -\dfrac{\sqrt{3}}{2},\dfrac{1}{2},1 \right)$
$\overrightarrow{AB}=\left( 0,0,1 \right)$,$\overrightarrow{CD}=\left( 0,1,-1 \right)$$.$
设$\overrightarrow{PM}=\lambda\overrightarrow{PC}\left( 0\leqslant\lambda\leqslant1\right)$,则$\overrightarrow{BM}=\overrightarrow{BP}+\overrightarrow{PM}=\overrightarrow{BP}+\lambda \overrightarrow{PC}$
$=\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2},-1 \right)+\lambda \left( -\dfrac{\sqrt{3}}{2},\dfrac{1}{2},1 \right)=\left( \dfrac{\sqrt{3}}{2}\left( 1-\lambda \right),\dfrac{1}{2}\left( 1+\lambda \right),\lambda -1 \right)$
设异面直线$BM$和$CE$所成角为$\alpha $,则
$\cos \alpha =\left| \cos \left\langle \overrightarrow{BM},\overrightarrow{CE} \right\rangle \right|=\left| \dfrac{\overrightarrow{BM}\cdot \overrightarrow{CE}}{\left| \overrightarrow{BM} \right|\cdot \left| \overrightarrow{CE} \right|} \right|=\dfrac{\left| 6-5\lambda \right|}{2\sqrt{5}\times \sqrt{2{{\lambda }^{2}}-3\lambda +2}}=\dfrac{\sqrt{10}}{5}$
得$\lambda =\dfrac{2}{3}$$.$此时,$\overrightarrow{BM}=\left( \dfrac{\sqrt{3}}{6},\dfrac{5}{6},-\dfrac{1}{3} \right).$
设面$MAB$的一个法向量为$\boldsymbol{{n_1}}=\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$,
有$\begin{cases} \boldsymbol{{n_1}}\cdot \overrightarrow{AB}=0 \\ \boldsymbol{{n_1}}\cdot \overrightarrow{BM}=0 \\ \end{cases}\Rightarrow \begin{cases} {{z}_{1}}=0 \\ \dfrac{\sqrt{3}}{6}{{x}_{1}}+\dfrac{5}{6}{{y}_{1}}-\dfrac{1}{3}{{z}_{1}}=0 \\ \end{cases}$
令${{y}_{1}}=\sqrt{3}$,则${{x}_{1}}=-5$,${{z}_{1}}=0$,取 $\boldsymbol{{n_1}}=\left( -5,\sqrt{3},0 \right)$$.$
设面$PCD$的一个法向量为$\boldsymbol{{n_2}}=\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$,
有$\begin{cases} \boldsymbol{{n_2}}\cdot \overrightarrow{CD}=0 \\ \boldsymbol{{n_2}}\cdot \overrightarrow{PC}=0 \\ \end{cases}\Rightarrow \begin{cases} {{y}_{2}}-{{z}_{2}}=0 \\ -\dfrac{\sqrt{3}}{2}{{x}_{2}}+\dfrac{1}{2}{{y}_{2}}+{{z}_{2}}=0 \\ \end{cases}$
令${{x}_{2}}=\sqrt{3}$,则${{y}_{2}}=1$,$z_2=1$,取$\boldsymbol{{n_2}}=\left( \sqrt{3},1,1 \right)$
设面$MAB$与面$PCD$的夹角为$\theta $,
则$\cos \theta =\left| \dfrac{{\boldsymbol{n}_{1}}\cdot {\boldsymbol{n}_{2}}}{\left| {\boldsymbol{n}_{1}} \right|\cdot \left| {\boldsymbol{n}_{2}} \right|} \right|=\left| \dfrac{-4\sqrt{3}}{\sqrt{140}} \right|=\dfrac{2\sqrt{105}}{35}$$.$
即面$MAB$与面$PCD$夹角的余弦值为$\dfrac{2\sqrt{105}}{35}$$.$
| 6.5.1 直线与平面垂直题目答案及解析(完整版)