| 6.5.1 直线与平面垂直 题目答案及解析

稿件来源:高途

| 6.5.1 直线与平面垂直题目答案及解析如下,仅供参考!

必修二

第六章 立体几何初步

6.5 垂直关系

6.5.1 直线与平面垂直

如图,在斜三棱柱$ABC-{{A}_{1}}{{B}_{1}}{{C}_{1}}$中,平面$ABC\perp $平面$AB{{B}_{1}}{{A}_{1}}$,$M,N$分别为棱$AB,A{{A}_{1}}$的中点,$BC=AC=3$$.$

$(1)$若四边形$AB{{B}_{1}}{{A}_{1}}$为菱形,证明:$A{{B}_{1}}\perp $平面$CMN$

$(2)$$AB=\sqrt{3}AC,\cos\angle BA{{A}_{1}}=\dfrac{2\sqrt{2}}{3}.$

$(i)$求平面$AC{{C}_{1}}{{A}_{1}}$与平面$BC{{C}_{1}}{{B}_{1}}$夹角的余弦值;

$(ii)$若斜三棱柱$ABC-{{A}_{1}}{{B}_{1}}{{C}_{1}}$内存在两个体积相等且相切的球,且每个球都与该三棱柱的一个底面及三个侧面相切,求点${{A}_{1}}$到平面$ABC$的距离$.$

[["

$(1)$证明见解析

$(2)(i)$$\\dfrac{1}{2}$$(ii)$$\\dfrac{4}{3}$

"]]

$(1)$如图,连接${{A}_{1}}B$

$\because $ 四边形$AB{{B}_{1}}{{A}_{1}}$为菱形,

$\therefore {{A}_{1}}B\perp A{{B}_{1}}$

$\because M,N$分别为棱$AB,A{{A}_{1}}$的中点,

$\therefore MN\text{//}{{A}_{1}}B$

$\therefore MN\perp A{{B}_{1}}$

$\because BC=AC$

$\therefore CM\perp AB$

$\because $ 平面$AB{{B}_{1}}{{A}_{1}}\perp $平面$ABC$,平面$AB{{B}_{1}}{{A}_{1}}\cap $平面$ABC=AB,CM\subset $平面$ABC$

$\therefore CM\perp $平面$AB{{B}_{1}}{{A}_{1}}$

$A{{B}_{1}}\subset $平面$AB{{B}_{1}}{{A}_{1}}$

$\therefore CM\perp AB_{1}$

$MN\cap CM=M,MN,CM\subset $平面$CMN$

$\therefore A{{B}_{1}}\perp $平面$CMN$$.$

$.$

$(2)$$(1)$可知$CM\perp $平面$AB{{B}_{1}}{{A}_{1}}$

$A$为原点,$AB$所在直线为$x$轴,以过点$A$且与$CM$平行的直线为$y$轴,平面$AB{{B}_{1}}{{A}_{1}}$内过点$A$且与$AB$垂直的直线为$z$轴,建立如图所示的空间直角坐标系,

$(i)$$\triangle ABC$中,$AB=3\sqrt{3},AC=BC=3$

则在等腰$\triangle ABC$中可得$\cos \angle CAB=\dfrac{\dfrac{1}{2}AB}{AC}=\dfrac{\dfrac{1}{2}\times 3\sqrt{3}}{3}=\dfrac{\sqrt{3}}{2}$

$\angle BAC=\angle ABC={{30}^{^\circ }}$

$C\left( \dfrac{3\sqrt{3}}{2},\dfrac{3}{2},0 \right),B\left( 3\sqrt{3},0,0 \right)$

$\overrightarrow{AC}=\left( \dfrac{3\sqrt{3}}{2},\dfrac{3}{2},0 \right),\overrightarrow{BC}=\left( -\dfrac{3\sqrt{3}}{2},\dfrac{3}{2},0 \right)$

$\therefore AC$的一个方向向量为$\boldsymbol{a}=\left( \sqrt{3},1,0 \right),BC$的一个方向向量为$\boldsymbol{b}=\left( -\sqrt{3},1,0 \right)$

$\cos\angle BA{{A}_{1}}=\dfrac{2\sqrt{2}}{3}$,得$\tan\angle BA{{A}_{1}}=\dfrac{1}{2\sqrt{2}}$,则直线$A{{A}_{1}}$上存在点$\left( 2\sqrt{2},0,1 \right)$

$\therefore A{{A}_{1}},B{{B}_{1}}$的一个方向向量为$\boldsymbol{c}=\left( 2\sqrt{2},0,1 \right)$

设平面$AC{{C}_{1}}{{A}_{1}}$的法向量为$\boldsymbol{n}=\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$

$\begin{cases} \boldsymbol{n}\cdot \boldsymbol{a}=\sqrt{3}{{x}_{1}}+{{y}_{1}}=0 \\ \boldsymbol{n}\cdot \boldsymbol{c}=2\sqrt{2}{{x}_{1}}+{{z}_{1}}=0 \\ \end{cases}$,取${{x}_{1}}=-1$

$\therefore \boldsymbol{n}=\left( -1,\sqrt{3},2\sqrt{2} \right)$

设平面$BC{{C}_{1}}{{B}_{1}}$的法向量为$\boldsymbol{m}=\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$

$\begin{cases} \boldsymbol{m}\cdot \boldsymbol{b}=-\sqrt{3}{{x}_{2}}+{{y}_{2}}=0 \\ \boldsymbol{m}\cdot \boldsymbol{c}=2\sqrt{2}{{x}_{2}}+{{z}_{2}}=0 \\ \end{cases}$,取${{x}_{2}}=1$

$\therefore \boldsymbol{m}=\left( 1,\sqrt{3},-2\sqrt{2} \right)$

设平面$AC{{C}_{1}}{{A}_{1}}$与平面$BC{{C}_{1}}{{B}_{1}}$的夹角为$\theta $

$\cos\theta =\left| \cos\left\langle \boldsymbol{m},\boldsymbol{n} \right\rangle \right|=\dfrac{\left| \boldsymbol{m}\cdot \boldsymbol{n} \right|}{\left| {\boldsymbol{m}} \right|\left| {\boldsymbol{n}} \right|}=\dfrac{\left| -1+3-8 \right|}{\sqrt{1+3+8}\times \sqrt{1+3+8}}=\dfrac{1}{2}$

$\therefore $ 平面$AC{{C}_{1}}{{A}_{1}}$与平面$BC{{C}_{1}}{{B}_{1}}$夹角的余弦值为$\dfrac{1}{2}$$.$

$(ii)$设与平面$ABC$相切的球的球心为${{O}_{1}}$,与平面$A_1B_1C_1$相切的球的球心为${{O}_{2}}$

由题意知球${{O}_{1}},{{O}_{2}}$均与平面$AB{{B}_{1}}{{A}_{1}}$相切,设切点分别为$D,E$

连接${{O}_{1}}{{O}_{2}},DE$,则${{O}_{1}}{{O}_{2}}\text{//}DE$${{O}_{1}}{{O}_{2}}=DE$

$\because $${{O}_{1}},{{O}_{2}}$均与平面$AC{{C}_{1}}{{A}_{1}}$相切,

$\therefore {{O}_{1}}{{O}_{2}}\text{//}$平面$AC{{C}_{1}}{{A}_{1}}$

$\because DE\not\subset $平面$AC{{C}_{1}}{{A}_{1}}$

$\therefore DE\text{//}$平面$AC{{C}_{1}}{{A}_{1}}$

$DE\subset $平面$AB{{B}_{1}}{{A}_{1}}$,平面$AB{{B}_{1}}{{A}_{1}}\cap $平面$AC{{C}_{1}}{{A}_{1}}=A{{A}_{1}}$

$\therefore DE\text{//}A{{A}_{1}}$

设球${{O}_{1}}$的半径为$r$,球心${{O}_{1}}\left( x,r,r \right)$,则$\overrightarrow{A{{O}_{1}}}=\left( x,r,r \right),\overrightarrow{B{{O}_{1}}}=\left( x-3\sqrt{3},r,r \right)$

$\because \mathrm{CM} \perp$平面$AB{{B}_{1}}{{A}_{1}}$

$\therefore $$C$到平面$AB{{B}_{1}}{{A}_{1}}$的距离为$CM=\dfrac{3}{2}$,则$0\lt r\lt \dfrac{3}{2}$

$r=\dfrac{\left| \overrightarrow{A{{O}_{1}}}\cdot \boldsymbol{n} \right|}{\left| {\boldsymbol{n}} \right|}=\dfrac{\left| \overrightarrow{B{{O}_{1}}}\cdot \boldsymbol{m} \right|}{\left| {\boldsymbol{m}} \right|}$,得$\left| -x+\left( \sqrt{3}+2\sqrt{2} \right)r \right|=2\sqrt{3}r=\left| x-3\sqrt{3}+\left( \sqrt{3}-2\sqrt{2} \right)r \right|$

$\left| -x+\left( \sqrt{3}+2\sqrt{2} \right)r \right|=\left| x-3\sqrt{3}+\left( \sqrt{3}-2\sqrt{2} \right)r \right|$,得$x=\dfrac{3\sqrt{3}}{2}+2\sqrt{2}r$

代入$\left| -x+\left( \sqrt{3}+2\sqrt{2} \right)r \right|=2\sqrt{3}r$,解得$r=\dfrac{1}{2}$

$\therefore DE={{O}_{1}}{{O}_{2}}=2r=1$

则线段$DE$$z$轴上的投影长度为$DE\cdot \sin\angle BA{{A}_{1}}=1\times \sqrt{1-\dfrac{8}{9}}=\dfrac{1}{3}$

$\therefore $ 斜三棱柱$ABC-{{A}_{1}}{{B}_{1}}{{C}_{1}}$的高为$2r+DE\cdot \sin\angle BA{{A}_{1}}=1+\dfrac{1}{3}=\dfrac{4}{3}$

$\therefore $${{A}_{1}}$到平面$ABC$的距离为$\dfrac{4}{3}$$.$

| 6.5.1 直线与平面垂直题目答案及解析(完整版)

去刷题
今日推荐