稿件来源:高途
| 6.5.1 直线与平面垂直题目答案及解析如下,仅供参考!
必修二
第六章 立体几何初步
6.5 垂直关系
6.5.1 直线与平面垂直
如图,在四棱锥${{B}_{1}}-AECD$中,底面$AECD$是菱形,$\angle DAE={{60}{^\circ }}$,$M$是$AE$的中点,$Q$是${{B}_{1}}D$的中点,且${{B}_{1}}M\perp $平面$AECD$,$AD=A{{B}_{1}}=2$.
$(1)$求证:$AE\perp $平面${{B}_{1}}DM$;
$(2)$求三棱锥$D-QEC$的体积;
$(3)$求平面$QEC$与平面${{B}_{1}}AD$所成角的余弦值.
$(1)$证明见解析;$(2)$$\\dfrac{1}{2}$;$(3)$$\\dfrac{\\sqrt{65}}{65}$
"]]$(1)$在菱形$AECD$中,连接$DE$,得等边$\triangle ADE$,
$\because M$是$AE$的中点,
$\therefore DM\perp AE$,
$\because {{B}_{1}}M\perp $平面$AECD$,$AE\subset $平面$AECD$,
$\therefore {{B}_{1}}M\perp AE$.
$\because {{B}_{1}}M\subset $平面${{B}_{1}}MD$,$DM\subset $平面${{B}_{1}}MD$,且${{B}_{1}}M\cap DM=M$,
$\therefore AE\perp $平面${{B}_{1}}DM$;
$(2)$ $\because \angle DAE={{60}{^\circ }}$,$AE\perp DM$,$AD=2$,
$\therefore DM=2\times \sin 60{}^\circ =\sqrt{3}$,
$\because AD=A{{B}_{1}}=2$,$AM=AM$,
$\therefore \triangle AM{{B}_{1}}\cong \triangle AMD$,则${{B}_{1}}M=DM=\sqrt{3}$,
由${{V}_{D-QEC}}={{V}_{Q-DEC}}=\dfrac{1}{2}\ {{V}_{{{B_1}}-DEC}}$.
又${{V}_{{{B_1}}-DEC}}=\dfrac{1}{3}\times \sqrt{3}\times \dfrac{\sqrt{3}}{4}\times 4=1$$.$
从而有${{V}_{D-QEC}}={{V}_{Q-DEC}}=\dfrac{1}{2}$;
$(3)$由$(1)$知$AE\perp {{B}_{1}}M$,$AE\perp DM$,故$AE$,${{B}_{1}}M$,$DM$两两垂直,
以$M$为坐标原点,$AE$,${{B}_{1}}M$,$DM$所在直线为坐标轴建立如图所示的空间直角坐标系.
则${{B}_{1}}\left( 0,0,\sqrt{3} \right)$,$A\left( -1,0,0 \right)$,$D\left( 0,\sqrt{3},0 \right)$,则$\overrightarrow{AD}=\left( 1,\sqrt{3},0 \right)$,$\overrightarrow{{{B}_{1}}D}=\left( 0,\sqrt{3},-\sqrt{3} \right)$$.$
令平面${{B}_{1}}AD$的一个法向量为$\boldsymbol{m}=\left( x,y,z \right)$,则$\begin{cases} \boldsymbol{m}\cdot \overrightarrow{AD}=x+\sqrt{3}y=0, \\ \boldsymbol{m}\cdot \overrightarrow{{{B}_{1}}D}=\sqrt{3}y-\sqrt{3}z=0, \\ \end{cases}$
令$y=1$,得$\boldsymbol{m}=\left( -\sqrt{3},1,1 \right)$,
又$Q\left( 0,\dfrac{\sqrt{3}}{2},\dfrac{\sqrt{3}}{2} \right)$,$E\left( 1,0,0 \right)$,$C\left( 2,\sqrt{3},0 \right)$,则$\overrightarrow{EQ}=\left( -1,\dfrac{\sqrt{3}}{2},\dfrac{\sqrt{3}}{2} \right)$,$\overrightarrow{EC}=\left( 1,\sqrt{3},0 \right)$.
令平面$EQC$的一个法向量为$\boldsymbol{n}=\left( a,b,c \right)$,则$\begin{cases} \boldsymbol{n}\cdot \overrightarrow{EQ}=0 \\ \boldsymbol{n}\cdot \overrightarrow{EC}=0 \\ \end{cases}$,即$\begin{cases} -a+\dfrac{\sqrt{3}}{2}b+\dfrac{\sqrt{3}}{2}c=0 \\ a+\sqrt{3}b=0 \\ \end{cases}$,
令$a=\sqrt{3}$,得$\boldsymbol{n}=\left( \sqrt{3},-1,3 \right)$$.$
有$\boldsymbol{m}\cdot \boldsymbol{n}=-\sqrt{3}\times \sqrt{3}+1\times \left( -1 \right)+1\times 3=-3-1+3=-1$,则$\left| \boldsymbol{m}\cdot \boldsymbol{n} \right|=1$,而$\left| {\boldsymbol{m}} \right|=\sqrt{5}$,$\left| {\boldsymbol{n}} \right|=\sqrt{13}$,
设平面$QEC$与平面${{B}_{1}}AD$所成角为$\theta $,则$\cos\theta =\dfrac{1}{\sqrt{5}\times \sqrt{13}}=\dfrac{\sqrt{65}}{65}$.
| 6.5.1 直线与平面垂直题目答案及解析(完整版)