稿件来源:高途
| 5.3.2 函数的极值与最大(小)值题目答案及解析如下,仅供参考!
选择性必修二
第五章 一元函数的导数及其应用
5.3 导数在研究函数中的应用
5.3.2 函数的极值与最大(小)值
已知$a\in \bf{R}$,函数${f(x)=a x^{3}-2 x+1}$有两个极值点${{x}_{1}},{{x}_{2}}$,则$(\qquad)$.
$a$可能为负值
","$f\\left( {{x}_{1}} \\right)+f\\left( {{x}_{2}} \\right)$为定值
","若$a=1$,则过点$(1,0)$作曲线$y={f(x)}$的切线,切线方程为$y=x-1$或$y=-2x+2$
","若存在${{x}_{0}}\\in \\bf{R}$,使得$\\left| f\\left( {{x}_{0}}+2 \\right)-f\\left( {{x}_{0}} \\right) \\right|\\le \\dfrac{1}{2}$,则$0\\lt a\\le \\dfrac{9}{4}$
"]$\because {f(x)=a x^{3}-2 x+1}$,则${f}'(x)=3a{{x}^{2}}-2$,
对于$\rm A$:当$a\le 0$时,${f}'\left( x \right)\lt 0$恒成立,
$\therefore f\left( x \right)$单调递减,故$f\left( x \right)$没有极值,故$\rm A$错误;
对于$\rm B$:当$a\gt 0$时,由$3a{{x}^{2}}-2=0$解得${{x}_{1}}=-\sqrt{\dfrac{2}{3a}}$,${{x}_{2}}=\sqrt{\dfrac{2}{3a}}$,
$\therefore f\left( x \right)$在区间$\left( -\infty ,{{x}_{1}} \right)$,$\left( {{x}_{2}},+\infty \right)$上${f}'\left( x \right)\gt 0,f\left( x \right)$单调递增,
在区间$\left( {{x}_{1}},{{x}_{2}} \right)$上${f}'\left( x \right)\lt 0,f\left( x \right)$单调递减,
$\therefore {{x}_{1}}$是$f\left( x \right)$的极大值点,${{x}_{2}}$是$f\left( x \right)$的极小值点,
而$3ax_{1}^{2}-2=0,3ax_{2}^{2}-2=0,ax_{1}^{2}=\dfrac{2}{3},ax_{2}^{2}=\dfrac{2}{3}$,
$\therefore f\left( {{x}_{1}} \right)+f\left( {{x}_{2}} \right)=ax_{1}^{3}-2{{x}_{1}}+1+ax_{2}^{3}-2{{x}_{2}}+1={{x}_{1}}\left( ax_{1}^{2}-2 \right)+{{x}_{2}}\left( ax_{2}^{2}-2 \right)+2$
$=-\dfrac{4}{3}\left( {{x}_{1}}+{{x}_{2}} \right)+2=2$为定值,故$\rm B$正确$.$
对于$\rm C$:若$a=1$,$f\left( x \right)={{x}^{3}}-2x+1$,${f}'\left( x \right)=3{{x}^{2}}-2$,
设切点为$\left( {{x}_{0}},x_{0}^{3}-2{{x}_{0}}+1 \right)$,则${f}'\left( {{x}_{0}} \right)=3x_{0}^{2}-2$,
$\therefore $ 切线方程为$y-\left( x_{0}^{3}-2{{x}_{0}}+1 \right)=\left( 3x_{0}^{2}-2 \right)\left( x-{{x}_{0}} \right)$,
又切线过点$\left( 1,0 \right)$,则$-\left( x_{0}^{3}-2{{x}_{0}}+1 \right)=\left( 3x_{0}^{2}-2 \right)\left( 1-{{x}_{0}} \right)$,
整理得$2x_{0}^{3}-3x_{0}^{2}+1=0$,
令$m\left( x \right)=2x_{{}}^{3}-3x_{{}}^{2}+1$,则${m}'\left( x \right)=6x_{{}}^{2}-6x=6x\left( x-1 \right)$,
$\therefore $ 当$x\lt 0$或$x\gt 1$时${{m}^{\prime }}\left( x \right)\gt 0$,当$0\lt x\lt 1$时${m}'\left( x \right)\lt 0$,
$\therefore m\left( x \right)$在$\left( -\infty ,0 \right)$,$\left( 1,+\infty \right)$上单调递增,在$\left( 0,1 \right)$上单调递减,
又$m\left( 0 \right)=1$,$m\left( 1 \right)=0$,$m\left( -\dfrac{1}{2} \right)=0$,
$\therefore $ 方程$2x_{0}^{3}-3x_{0}^{2}+1=0$的解为${{x}_{0}}=-\dfrac{1}{2}$或$x_0=1$,
$\therefore $ 切线方程为$y=-\dfrac{5}{4}x+\dfrac{5}{4}$或$y=x-1$,
$\therefore $ 函数$f\left( x \right)$过点$\left( 1,0 \right)$的切线方程为$y=-\dfrac{5}{4}x+\dfrac{5}{4}$或$y=x-1$,故$\rm C$错误;
对于$\rm D$:若存在${{x}_{0}}\in \bf{R}$,使得$\left| f\left( {{x}_{0}}+2 \right)-f\left( {{x}_{0}} \right) \right|\le \dfrac{1}{2}$,
即$\left| a{{\left( {{x}_{0}}+2 \right)}^{3}}-2\left( {{x}_{0}}+2 \right)+1-\left( ax_{0}^{3}-2{{x}_{0}}+1 \right) \right|\le \dfrac{1}{2}$,
即$\left| 3ax_{0}^{2}+6a{{x}_{0}}+4a-2 \right|\le \dfrac{1}{4}$,
即$-\dfrac{1}{4}\le 3ax_{0}^{2}+6a{{x}_{0}}+4a-2\le \dfrac{1}{4}$,
即$\begin{cases} 3ax_{0}^{2}+6a{{x}_{0}}+4a-2\ge -\dfrac{1}{4} \\ 3ax_{0}^{2}+6a{{x}_{0}}+4a-2\le \dfrac{1}{4} \\ \end{cases}$,即$\begin{cases} 3ax_{0}^{2}+6a{{x}_{0}}+4a-\dfrac{7}{4}\ge 0 \\ 3ax_{0}^{2}+6a{{x}_{0}}+4a-\dfrac{9}{4}\le 0 \\ \end{cases}$,
由于$a\gt 0$,
$\therefore 3ax_{0}^{2}+6a{{x}_{0}}+4a-\dfrac{7}{4}\ge 0$必存在,
对于$3ax_{0}^{2}+6a{{x}_{0}}+4a-\dfrac{9}{4}\le 0$,则有$\varDelta =36{{a}^{2}}-12a\left( 4a-\dfrac{9}{4} \right)=-12{{a}^{2}}+27a\ge 0$,
即$\begin{cases} a\left( 4a-9 \right)\le 0 \\ a\gt 0 \\ \end{cases}$,解得$0\lt a\le \dfrac{9}{4}$,故$\rm D$正确$.$
故选:$\rm BD$
| 5.3.2 函数的极值与最大(小)值题目答案及解析(完整版)