稿件来源:高途
| 2.2.4 均值不等式及其应用题目答案及解析如下,仅供参考!
必修一
第二章 等式与不等式
2.2 不等式
2.2.4 均值不等式及其应用
设$x$,$y$,$z$,$w$是正实数,则$\dfrac{xy+2yz+3zw}{{x}^{2}+{y}^{2}+{z}^{2}+{w}^{2}}$的最大值为 .
$\because x$,$y$,$z$,$w$是正实数,
$\therefore \dfrac{xy+2yz+3zw}{{x}^{2}+{y}^{2}+{z}^{2}+{w}^{2}}$
$=\dfrac{xy+2yz+3zw}{{x}^{2}+\lambda {y}^{2}+(1-\lambda ){y}^{2}+(1-\mu ){z}^{2}+\mu {z}^{2}+{w}^{2}}$
$\leqslant \dfrac{xy+2yz+3zw}{2\sqrt{\lambda }xy+2\sqrt{(1-\lambda )(1-\mu )}yz+2\sqrt{\mu }zw}$,$\lambda \in (0,1)$,
由$2\sqrt{\lambda }:2\sqrt{(1-\lambda )(1-\mu )}:2\sqrt{\mu }=1:2:3$,整理得$\mu =9\lambda$,
$\therefore \dfrac{\sqrt{\lambda }}{\sqrt{(1-\lambda )(1-9\lambda )}}=\dfrac{1}{2}$,整理得$9\lambda ^{2}-14\lambda +1=0$,
解得$\lambda =\dfrac{7-2\sqrt{10}}{9}$或$\lambda =\dfrac{7+2\sqrt{10}}{9}$(舍$)$,
$\therefore \dfrac{xy+2yz+3zw}{{x}^{2}+{y}^{2}+{z}^{2}+{w}^{2}}\leqslant \dfrac{1}{2\sqrt{\dfrac{7-2\sqrt{10}}{9}}\cdot \dfrac{xy+2yz+3zw}{xy+2yz+3zw}}=\dfrac{1}{2\sqrt{\dfrac{7-2\sqrt{10}}{9}}}=\dfrac{3}{2\sqrt{(\sqrt{5}-\sqrt{2})^{2}}}=\dfrac{\sqrt{5}+\sqrt{2}}{2}$,
$\therefore \dfrac{xy+2yz+3zw}{{x}^{2}+{y}^{2}+{z}^{2}+{w}^{2}}$的最大值为$\dfrac{\sqrt{5}+\sqrt{2}}{2}$.
故答案为:$\dfrac{\sqrt{5}+\sqrt{2}}{2}$
| 2.2.4 均值不等式及其应用题目答案及解析(完整版)