| 8.6.2 直线与平面垂直 题目答案及解析

稿件来源:高途

| 8.6.2 直线与平面垂直题目答案及解析如下,仅供参考!

必修二

第八章 立体几何初步

8.6 空间直线、平面的垂直

8.6.2 直线与平面垂直

如图,正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$棱长为$1$$P$$A_{1}D$上的一个动点,下列结论中正确的是$(\qquad)$

["

$BP$的最小值为$\\dfrac{\\sqrt{6}}{2}$

","

$P$$A_{1}D$上运动时,都有$C_{1}P\\perp BD_{1}$

","

$P$在直线$A_{1}D$上运动时,三棱锥$A-B_{1}PC$的体积不变

","

$PA+PC$的最小值为$\\sqrt{2-\\sqrt{2}}$

"]
[["ABC"]]

对于$\rm A$,连接$A_{1}B$$BD$,在正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$中,${A}_{1}B=BD={A}_{1}D=\sqrt{2}$

$BP$的最小值为正三角形$A_{1}BD$的边$A_{1}D$上的高,即$\sqrt{2}\times \dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{6}}{2}$$\rm A$正确;

对于$\rm B$,连接$A_{1}C_{1}$$B_{1}D_{1}$$DC_{1}$

由于$BB_{1}\perp$平面$A_{1}B_{1}C_{1}D_{1}$$A_{1}C_{1}\subset$平面$A_{1}B_{1}C_{1}D_{1}$,故$BB_{1}\perp A_{1}C_{1}$

$B_{1}D_{1}\perp A_{1}C_{1}$$BB_{1}\cap B_{1}D_{1}=B_{1}$$BB_{1}$$B_{1}D_{1}\subset$平面$BB_{1}D_{1}$

$A_{1}C_{1}\perp$平面$BB_{1}D_{1}$$BD_{1}\subset$平面$BB_{1}D_{1}$,故$A_{1}C_{1}\perp BD_{1}$

同理可证$A_{1}D\perp BD_{1}$$A_{1}D\cap A_{1}C_{1}=A_{1}$$A_{1}D$$A_{1}C_{1}\subset$平面$A_{1}DC_{1}$

$BD_{1}\perp$平面$A_{1}DC_{1}$$C_{1}P\subset$平面$A_{1}DC_{1}$,故$BD_{1}\perp C_{1}P$,即$C_{1}P\perp BD_{1}$$\rm B$正确;

对于$\rm C$,连接$AB_{1}$$B_{1}C$$AC$

$\because A_{1}B_{1}//DC$$A_{1}B_{1}=DC$

故四边形$A_{1}B_{1}CD$为平行四边形,则$A_{1}D//B_{1}C$$B_{1}C\subset$平面$AB_{1}C$$A_{1}D\not\subset$平面$AB_{1}C$

$A_{1}D//$平面$AB_{1}C$$P$点在直线$A_{1}D$上运动,即$P$到平面$AB_{1}C$的距离为定值,

$\triangle $$AB_{1}C$为边长为$\sqrt{2}$的正三角形,其面积为定值,

故三棱锥$P-AB_{1}C$的体积为定值,由于${V}_{A-{B_1}PC}={V}_{P-A{B_1}C}$

故三棱锥$A-PB_{1}C$的体积为定值,$\rm C$正确;

对于$\rm D$,将平面$DCB_{1}A_{1}$沿着$A_{1}D$翻折到平面$AA_{1}D$上,连接$AC$

$A_{1}D$交于点$P$,则$AC$即为$PA+PC$的最小值;

$\triangle ADC$中,$\angle ADC=135^\circ$$AC=\sqrt{AD^{2}+CD^{2}-2AD\cdot CD\cos 135^\circ }=\sqrt{2+\sqrt{2}}$

$PA+PC$的最小值为$\sqrt{2+\sqrt{2}}$$\rm D$错误.

故选:$\rm ABC$

| 8.6.2 直线与平面垂直题目答案及解析(完整版)

去刷题
今日推荐