| 1.4.2 用空间向量研究距离、夹角问题 题目答案及解析

稿件来源:高途

| 1.4.2 用空间向量研究距离、夹角问题题目答案及解析如下,仅供参考!

选择性必修一

第一章 空间向量与立体几何

1.4 空间向量的应用

1.4.2 用空间向量研究距离、夹角问题

正方体$ABCD-{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}$棱长为$4$,点$P$满足$\left| \overrightarrow{PB} \right|=1$,点$Q$满足$\overrightarrow{AQ}=\lambda \overrightarrow{AD}+\left( 1-\lambda \right)\overrightarrow{A{{D}_{1}}}$$\lambda \in \bf{R}$,则$\left| \overrightarrow{AP}+\overrightarrow{AQ} \right|$的最小值为                 $.$

[["$4\\sqrt{2}-1$"]]

如图建立空间直角坐标系:

  

则由题意可得$A\left( 0,0,0 \right)$$B\left( 4,0,0 \right)$$D\left( 0,4,0 \right)$${{D}_{1}}\left( 0,4,4 \right)$$.$

$\because $$Q$满足$\overrightarrow{AQ}=\lambda \overrightarrow{AD}+\left( 1-\lambda \right)\overrightarrow{A{{D}_{1}}}$$\lambda \in \bf{R}$

$\therefore $$Q$,点$D$和点${{D}_{1}}$三点共线$.$

$P\left( {{x}_{0}},{{y}_{0}},{{z}_{0}} \right)$$Q\left( 0,4,t \right)$

$\overrightarrow{AP}=\left( {{x}_{0}},{{y}_{0}},{{z}_{0}} \right)$$\overrightarrow{AQ}=\left( 0,4,t \right)$

$\therefore \overrightarrow{AP}+\overrightarrow{AQ}=\left( {{x}_{0}},{{y}_{0}}+4,{{z}_{0}}+t \right)$

$\left| \overrightarrow{AP}+\overrightarrow{AQ} \right|=\sqrt{x_{0}^{2}+{{\left( {{y}_{0}}+4 \right)}^{2}}+{{\left( {{z}_{0}}+t \right)}^{2}}}$$.$

$y=x_{0}^{2}+{{\left( {{y}_{0}}+4 \right)}^{2}}+{{\left( {{z}_{0}}+t \right)}^{2}}$,则该函数可以看做是关于$t$的二次函数,

则当$t=-{{z}_{0}}$时,函数$y=x_{0}^{2}+{{\left( {{y}_{0}}+4 \right)}^{2}}+{{\left( {{z}_{0}}+t \right)}^{2}}$有最小值,为$\sqrt{x_{0}^{2}+{{\left( {{y}_{0}}+4 \right)}^{2}}}$$.$

$\therefore $ 要使$\left| \overrightarrow{AP}+\overrightarrow{AQ} \right|$最小,可先取$t=-{{z}_{0}}$,此时$\left| \overrightarrow{AP}+\overrightarrow{AQ} \right|=\sqrt{x_{0}^{2}+{{\left( {{y}_{0}}+4 \right)}^{2}}}$

其几何意义是点$P$在平面$xoy$上的射影点${{P}_{0}}\left( {{x}_{0}},{{y}_{0}},0 \right)$到点$M\left( 0,-4,0 \right)$的距离$.$

$\because \left| \overrightarrow{PB} \right|=1$

$\therefore $$P$的轨迹是以点$B\left( 4,0,0 \right)$为球心,$1$为半径的球面,

则射影点${{P}_{0}}\left( {{x}_{0}},{{y}_{0}},0 \right)$的轨迹是以点$B\left( 4,0,0 \right)$为圆心,$1$为半径的圆及其内部$.$

$\therefore\left| \overrightarrow{AP}+\overrightarrow{AQ}\right|=\sqrt{x_{0}^{2}+\left( y_{0}+4\right)^{2}}\geqslant\left| BM\right|-1$

$\because \left| BM \right|=\sqrt{{{\left( 4-0 \right)}^{2}}+{{\left[ 0-\left( -4 \right) \right]}^{2}}+{{\left( 0-0 \right)}^{2}}}=4\sqrt{2}$

$\therefore\left| \overrightarrow{AP}+\overrightarrow{AQ}\right|\geqslant4\sqrt{2}-1$

故答案为:$4\sqrt{2}-1$

| 1.4.2 用空间向量研究距离、夹角问题题目答案及解析(完整版)

去刷题
今日推荐