稿件来源:高途
| 1.4.2 用空间向量研究距离、夹角问题题目答案及解析如下,仅供参考!
选择性必修一
第一章 空间向量与立体几何
1.4 空间向量的应用
1.4.2 用空间向量研究距离、夹角问题
正方体$ABCD-{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}$棱长为$4$,点$P$满足$\left| \overrightarrow{PB} \right|=1$,点$Q$满足$\overrightarrow{AQ}=\lambda \overrightarrow{AD}+\left( 1-\lambda \right)\overrightarrow{A{{D}_{1}}}$,$\lambda \in \bf{R}$,则$\left| \overrightarrow{AP}+\overrightarrow{AQ} \right|$的最小值为 $.$
如图建立空间直角坐标系:
则由题意可得$A\left( 0,0,0 \right)$,$B\left( 4,0,0 \right)$,$D\left( 0,4,0 \right)$,${{D}_{1}}\left( 0,4,4 \right)$$.$
$\because $ 点$Q$满足$\overrightarrow{AQ}=\lambda \overrightarrow{AD}+\left( 1-\lambda \right)\overrightarrow{A{{D}_{1}}}$,$\lambda \in \bf{R}$,
$\therefore $ 点$Q$,点$D$和点${{D}_{1}}$三点共线$.$
设$P\left( {{x}_{0}},{{y}_{0}},{{z}_{0}} \right)$,$Q\left( 0,4,t \right)$,
则$\overrightarrow{AP}=\left( {{x}_{0}},{{y}_{0}},{{z}_{0}} \right)$,$\overrightarrow{AQ}=\left( 0,4,t \right)$,
$\therefore \overrightarrow{AP}+\overrightarrow{AQ}=\left( {{x}_{0}},{{y}_{0}}+4,{{z}_{0}}+t \right)$
则$\left| \overrightarrow{AP}+\overrightarrow{AQ} \right|=\sqrt{x_{0}^{2}+{{\left( {{y}_{0}}+4 \right)}^{2}}+{{\left( {{z}_{0}}+t \right)}^{2}}}$$.$
令$y=x_{0}^{2}+{{\left( {{y}_{0}}+4 \right)}^{2}}+{{\left( {{z}_{0}}+t \right)}^{2}}$,则该函数可以看做是关于$t$的二次函数,
则当$t=-{{z}_{0}}$时,函数$y=x_{0}^{2}+{{\left( {{y}_{0}}+4 \right)}^{2}}+{{\left( {{z}_{0}}+t \right)}^{2}}$有最小值,为$\sqrt{x_{0}^{2}+{{\left( {{y}_{0}}+4 \right)}^{2}}}$$.$
$\therefore $ 要使$\left| \overrightarrow{AP}+\overrightarrow{AQ} \right|$最小,可先取$t=-{{z}_{0}}$,此时$\left| \overrightarrow{AP}+\overrightarrow{AQ} \right|=\sqrt{x_{0}^{2}+{{\left( {{y}_{0}}+4 \right)}^{2}}}$,
其几何意义是点$P$在平面$xoy$上的射影点${{P}_{0}}\left( {{x}_{0}},{{y}_{0}},0 \right)$到点$M\left( 0,-4,0 \right)$的距离$.$
又$\because \left| \overrightarrow{PB} \right|=1$,
$\therefore $ 点$P$的轨迹是以点$B\left( 4,0,0 \right)$为球心,$1$为半径的球面,
则射影点${{P}_{0}}\left( {{x}_{0}},{{y}_{0}},0 \right)$的轨迹是以点$B\left( 4,0,0 \right)$为圆心,$1$为半径的圆及其内部$.$
$\therefore\left| \overrightarrow{AP}+\overrightarrow{AQ}\right|=\sqrt{x_{0}^{2}+\left( y_{0}+4\right)^{2}}\geqslant\left| BM\right|-1$
又$\because \left| BM \right|=\sqrt{{{\left( 4-0 \right)}^{2}}+{{\left[ 0-\left( -4 \right) \right]}^{2}}+{{\left( 0-0 \right)}^{2}}}=4\sqrt{2}$,
$\therefore\left| \overrightarrow{AP}+\overrightarrow{AQ}\right|\geqslant4\sqrt{2}-1$.
故答案为:$4\sqrt{2}-1$
| 1.4.2 用空间向量研究距离、夹角问题题目答案及解析(完整版)