稿件来源:高途
| 小船过河问题题目答案及解析如下,仅供参考!
必修2
第五章 曲线运动
5.1 曲线运动
小船过河问题
如图所示,一艘炮艇沿长江由西向东快速行驶,在炮艇上发射炮弹射击北岸的目标。已知炮艇向正东行驶的速度大小为$v_{1}$,炮艇静止时炮弹的发射速度大小为$v_{2}$,炮艇所行进的路线离射击目标的最近距离为$d$,不计空气阻力的影响,要想命中目标且炮弹在空中飞行时间最短,则$(\qquad)$
当炮艇前进至$O$点时垂直于运动方向向北发射炮弹刚好能击中目标
","炮艇距离目标为$\\dfrac{v_{1}}{v_{2}}d$时发射炮弹
","炮艇距离目标为$\\sqrt{v_{1}^{2}+v_{2}^{2}}\\dfrac{d}{v_{2}}$时发射炮弹
","炮弹在空中飞行的最短时间是$\\dfrac{d}{v_{1}}$
"]$\rm A$.当炮艇前进至$O$点时垂直于运动方向向北发射炮弹,炮弹参与沿着河岸的运动和垂直于河岸的两个运动,最后炮弹将落在目标的东方,$\rm A$错误;
$\rm D$.在垂直河岸速度最大时,飞行时间最短,且最短时间为$t=\dfrac{d}{v_{2}}$,$\rm D$错误;
$\rm BC$.在空中飞行时间最短时,发射点位置到$O$点的距离$x=v_{1}t=v_{1}\dfrac{d}{v_{2}}$
因此发射点位置到目标的距离$s=\sqrt{x^{2}+d^{2}}=\sqrt{v_{1}^{2}+v_{2}^{2}}\dfrac{d}{v_{2}}$
$\rm B$错误,$\rm C$正确。
故选:$\rm C$。
| 小船过河问题题目答案及解析(完整版)