高中 | 能量守恒定律 题目答案及解析

稿件来源:高途

高中 | 能量守恒定律题目答案及解析如下,仅供参考!

选修3-3

第十章 热力学定律

10.3 热力学第一定律 能量守恒定律

能量守恒定律

如图,两条固定的光滑平行金属导轨,所在平面与水平面夹角为$\theta$,间距为$l$,导轨电阻忽略不计,两端各接一个阻值为$2R$的定值电阻,形成闭合回路:质量为$m$的金属棒垂直导轨放置,并与导轨接触良好,接入导轨之间的电阻为$R$;劲度系数为$k$的两个完全相同的绝缘轻质弹簧与导轨平行,一端固定,另一端均与金属棒中间位置相连,弹簧的弹性势能$E_{p}$与形变量$x$的关系为$E_{p}=\dfrac{1}{2}kx^{2}$;将金属棒移至导轨中间位置时,两弹簧刚好处于原长状态;整个装置处于垂直导轨所在平面向上的匀强磁场中,磁感应强度大小为$B$。将金属棒从导轨中间位置向上移动距离$a$后静止释放,金属棒沿导轨向下运动到最远处,用时为$t$,最远处与导轨中间位置距离为$b$,弹簧形变始终在弹性限度内。此过程中$(\qquad)$

["

金属棒所受安培力冲量大小为$\\dfrac{B^{2}l^{2}(a+b)}{R}$

","

每个弹簧对金属棒施加的冲量大小为$\\dfrac{B^{2}l^{2}(a+b)}{4R}+\\dfrac{mgt\\sin\\theta}{2}$

","

每个定值电阻产生的热量为$\\dfrac{k\\left( a^{2}-b^{2} \\right)}{8}+\\dfrac{mg(a+b)\\sin\\theta}{4}$

","

金属棒的平均输出功率为$\\dfrac{k\\left( a^{2}-b^{2} \\right)+mg(a+b)\\sin\\theta}{2t}$

"]
[["D"]]

$\rm A$.根据$I_{安}=B\overline{I}l\Delta t=Blq$

$q=\dfrac{\overline{E}}{R_{总}}\Delta t=\dfrac{\Delta\Phi}{R_{总}}=\dfrac{Bl(a+b)}{R_{总}}$$R_{总}=\dfrac{2R \cdot 2R}{2E+2R}+R=2R$

解得$I_{安}=\dfrac{B^{2}l^{2}(a+b)}{2R}$,选项$\rm A$错误;

$\rm B$.该过程中由动量定理$2I_{弹}-I_{安}+mg\sin \theta ⋅ t=0$

解得每个弹簧对金属棒施加的冲量大小为$I_{弹}=\dfrac{1}{2}I_{安}-\dfrac{1}{2}mgt\sin\theta=\dfrac{B^{2}l^{2}(a+b)}{4R}-\dfrac{1}{2}mgt\sin\theta$,选项$\rm B$错误;

$\rm C$.由能量关系可知回路产生的总热量$Q=mg\sin\theta(a+b)+2 \times \dfrac{1}{2}ka^{2}-2 \times \dfrac{1}{2}kb^{2}$

每个定值电阻产生的热量为$Q_{1}=\dfrac{1}{4}Q=\dfrac{mg\sin\theta(a+b)}{4}+\dfrac{1}{4}k(a^{2}-b^{2})$,选项$\rm C$错误;

$\rm D$.金属棒的平均输出功率$\overline{P}=\dfrac{\dfrac{1}{2}Q}{t}=\dfrac{mg\sin\theta(a+b)+k(a^{2}-b^{2})}{2t}$,选项$\rm D$正确。

故选:$\rm D$

高中 | 能量守恒定律题目答案及解析(完整版)

去刷题
相关题库:
带电粒子绕着带电量为的源电荷做轨迹为椭圆的曲线运动,源电荷固定在椭圆左焦点上,带电粒子电量为;已知椭圆焦距为,半长轴为,电势计算公式为,带电粒子速度的平方与其到电荷的距离的倒数满足如图关系。 如图所示,竖直平面内有一长度的粗糙平台,动摩擦因数,其左侧有弹簧和质量的小球。弹簧处于压缩状态,弹性势能,与小球不粘连。小球右侧有一半径、圆心角的光滑圆弧轨道,最底端平滑连接另一长的粗糙平台。质量的小球静止在点,左侧粘有少量炸药(质量不计),端有一质量的小球,用长为的轻绳悬吊,对点刚好无压力。无初速地释放小球,小球恰好沿点切线方向进入圆弧轨道到达点,与小球接触瞬间引燃炸药(未发生碰撞),爆炸后小球、速度方向均水平。小球恰好以原来进入点的速度从点滑出,所有小球均可视为质点且质量不变,忽略弹簧长度的变化,取,求: 如图,光滑水平面上存在竖直向上、宽度大于的匀强磁场,其磁感应强度大小为。甲、乙两个合金导线框的质量均为,长均为,宽均为,电阻分别为和。两线框在光滑水平面上以相同初速度并排进入磁场,忽略两线框之间的相互作用。则 如图,有两个电性相同且质量分别为、的粒子、,初始时刻相距,粒子以速度沿两粒子连线向速度为的粒子运动,此时、两粒子系统的电势能等于。经时间粒子到达点,此时两粒子速度相同,同时开始给粒子施加一恒力,方向与速度方向相同。当粒子的速度为时,粒子恰好运动至点且速度为,、粒子间距离恢复为,这时撤去恒力。己知任意两带电粒子系统的电势能与其距离成反比,忽略两粒子所受重力。求:(、、、均为己知量) 如图,与水平面成夹角且固定于、两点的硬直杆上套着一质量为的滑块,弹性轻绳一端固定于点,另一端跨过固定在处的光滑定滑轮与位于直杆上点的滑块拴接,弹性轻绳原长为,为且垂直于。现将滑块无初速度释放,假设最大静摩擦力与滑动摩擦力相等。滑块与杆之间的动摩擦因数为,弹性轻绳上弹力的大小与其伸长量满足。,取,。则滑块 某地为发展旅游经济,因地制宜利用山体举办了机器人杂技表演。表演中,需要将质量为的机器人抛至悬崖上的点,图为山体截面与表演装置示意图。、为同一水平面上两条光滑平行轨道,轨道中有质量为的滑杆。滑杆用长度为的轻绳与机器人相连。初始时刻,轻绳??紧且与轨道平行,机器人从点以初速度竖直向下运动,点位于轨道平面上,且在点正下方,。滑杆始终与轨道垂直,机器人可视为质点且始终作同一竖直平面内运动,不计空气阻力,轻绳不可伸长,,重力加速度大小为。
今日推荐